
CS3230
AY23/24 SEM 2

01. ASYMPTOTIC ANALYSIS
• algorithm → a finite sequence of well-defined

instructions to solve a given computational problem
• word-RAM model → runtime is the total number of

instructions executed
• operators, comparisons, if, return, etc
• each instruction operates on a word of data (limited

size) ⇒ fixed constant amount of time

Asymptotic Notations
upper bound (≤): f(n) = O(g(n))

if ∃c > 0, n0 > 0 such that ∀n ≥ n0,
0 ≤ f(n) ≤ cg(n)

lower bound (≥): f(n) = Ω(g(n))
if ∃c > 0, n0 > 0 such that ∀n ≥ n0,

0 ≤ cg(n) ≤ f(n)

tight bound: f(n) = Θ(g(n))
if ∃c1, c2, n0 > 0 such that ∀n ≥ n0,

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

o-notation (<): f(n) = o(g(n))
if ∀c > 0, ∃n0 > 0 such that ∀n ≥ n0,

0 ≤ f(n) < cg(n)

ω-notation (>): f(n) = ω(g(n))
if ∀c > 0, ∃n0 > 0 such that ∀n ≥ n0,

0 ≤ cg(n) < f(n)

Limits
Assume f(n), g(n) > 0.

lim
n→∞

f(n)

g(n)
= 0 ⇒ f(n) = o(g(n))

lim
n→∞

f(n)

g(n)
< ∞ ⇒ f(n) = O(g(n))

0 < lim
n→∞

f(n)

g(n)
< ∞ ⇒ f(n) = Θ(g(n))

lim
n→∞

f(n)

g(n)
> 0 ⇒ f(n) = Ω(g(n))

lim
n→∞

f(n)

g(n)
= ∞ ⇒ f(n) = ω(g(n))

Proof. using delta epsilon definition

Properties of Big O
Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

• transitivity - applies for O,Θ,Ω, o, ω
f(n) = O(g(n))∧g(n) = O(h(n)) ⇒ f(n) = O(h(n))

• reflexivity - for O,Ω,Θ, f(n) = O(f(n))
• symmetry - f(n) = Θ(g(n)) ⇐⇒ g(n) = Θ(f(n))
• complementarity -

• f(n) = O(g(n)) ⇐⇒ g(n) = Ω(f(n))
• f(n) = o(g(n)) ⇐⇒ g(n) = ω(f(n))

• misc

• if f(n) = ω(g(n)), then f(n) = Ω(g(n))
• if f(n) = o(g(n)), then f(n) = O(g(n))

log logn < logn < (logn)k < nk < kn

insertion sort: O(n2) with worst case Θ(n2)

02. SOLVING RECURRENCES
for a sub-problems of size n

b
where f(n) is the time to

divide and combine,
T (n) = aT (n

b
) + f(n)

Telescoping method
The telescoping method uses the telescoping series
For any sequence a1, a2, . . . , an,∑n−1

k=0 ak − ak+1 =
(a0−a1)+(a1−a2)+. . .+(an−2−an−1)+(an−1−an)
= a0 − an

example

Proof. T (n) = 2T (n/2) + n ⇒ Θ(n lgn)

T (n) = 2T (n/2) + n

⇒ T (n)
n

=
T (n/2)
n/2

+ 1 (Divide by n)
By telescoping method, we have . . .
T (n)
n

=
T (n/2)
n/2

+ 1

T (n/2)
n/2

=
T (n/4)
n/4

+ 1

T (n/4)
n/4

=
T (n/8)
n/8

+ 1
. . .
T (2)
2

=
T (1)
1

+ 1
Using property of telescoping series, we have
T (n)
n

=
T (1)
1

+ lgn (Height = lgn)
T (n) = n · T (1) + n lgn ∈ θ(n lgn)

Recursion tree
total = height × number of leaves
• each node represents the cost of a single subproblem
• height of the tree = longest path from root to leaf

Recursion tree is useful for visualising recurrences.

Master method
a ≥ 1, b > 1, and f is asymptotically positive
T (n) = aT (n

b
) + f(n) =

Θ(nlogb a) if f(n) < nlogb a polynomially
Θ(nlogb a logn) if f(n) = nlogb a

Θ(f(n)) if f(n) > nlogb a polynomially

three common cases
1. If f(n) = O(nlogb a−ϵ) for some constant ϵ > 0,

• f(n) grows polynomially slower than nlogb a by nϵ

factor.
• then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a logk n) for some k ≥ 0,
• f(n) and nlogb a grow at similar rates.
• then T (n) = Θ(nlogb a logn)

3. If f(n) = Ω(nlogb a+ϵ) for some constant ϵ > 0,
• and f(n) satisfies the regularity condition

• af(n/b) ≤ cf(n) for some constant c < 1 and
all sufficiently large n

• this guarantees that the sum of subproblems is
smaller than f(n).

• f(n) grows polynomially faster than nlogb a by nϵ

factor
• then T (n) = Θ(f(n)).

Substitution method
1. guess that T (n) = O(f(n)).
2. verify by induction:

2.1. to show that for n ≥ n0, T (n) ≤ c · f(n)
2.2. set c = max{2, q} and n0 = 1
2.3. verify base case(s): T (n0) = q
2.4. recursive case (n > n0):

• by strong induction, assume T (k) ≤ c · f(k) for
n > k ≥ n0

• T(n) = ¡recurrence¿ ... ≤ c · f(n)
2.5. hence T (n) = O(f(n)).

! may not be a tight bound!

example

Proof. T (n) = 4T (n/2) + n2/ lgn ⇒ Θ(n2 lg lgn)

T (n) = 4T (n/2) + n2

lgn

= 4(4T (n/4) +
(n/2)2

lgn−lg2
) + n2

lgn

= 16T (n/4) + n2

lgn−lg 2
+ n2

lgn

=
lgn∑
k=1

n2

lgn−k

= n2 lg lgn by approx. of harmonic series (
∑ 1

k
)

Proof. T (n) = 4T (n/2) + n ⇒ O(n2)

To show that for all n ≥ n0, T (n) ≤ c1n2 − c2n

1. Set c1 = q + 1, c2 = 1, n0 = 1.
2. Base case (n = 1): subbing into c1n2 − c2n,
T (1) = q ≤ (q + 1)(1)2 − (1)(1)

3. Recursive case (n > 1):
• by strong induction, assume
T (k) ≤ c1 · k2 − c2 · k for all n > k ≥ 1

• T (n) = 4T (n/2) + n
= 4(c1(n/2)2 − c2(n/2)) + n
= c1n2 − 2c2n+ n
= c1n2 − c2n+ (1− c2)n
= c1n2 − c2n since c2 = 1 ⇒ 1− c2 = 0

03. ITERATION, RECURSION,
DIVIDE-AND-CONQUER
Iterative Algorithms
• iterative → loop(s), sequentially processing input

elements
• loop invariant implies correctness if

• initialisation - true before the first iteration of the loop
• maintenance - if true before an iteration, it remains true

at the beginning of the next iteration
• termination - true when the algorithm terminates

examples
• insertionSort: with loop variable as j, A[1..J − 1] is

sorted.
• selectionSort: with loop variable as j, the array
A[1..j − 1] is sorted and contains the j − 1 smallest
elements of A.

Divide-and-Conquer
Powering a Number
problem: compute f(n,m) = an (modm) for all n,m ∈ Z
• observation: f(x+ y,m) = f(x,m) ∗ f(y,m) (modm)
• naive solution: recursively compute and combine
f(n− 1,m) ∗ f(1,m) (mod m)
• T (n) = T (n− 1) + T (1) + Θ(1) ⇒ T (n) = Θ(n)

• better solution: divide and conquer
• divide: trivial
• conquer: recursively compute f(⌊n/2⌋,m)
• combine:

• f(n,m) = f(⌊n/2⌋,m)2 (mod m) if n is even
• f(n,m) = f(1,m) ∗ f(⌊n/2⌋,m)2 (modm) if odd

• T (n) = T (n/2) + Θ(1) ⇒ Θ(logn)

Fibonacci Numbers
• The recursive algorithm F (n) = F (n− 1) + F (n− 2) to

get the n-th Fibonacci number is O(2n)
• The iterative Fibonacci algorithm runs n O(n).
• We can use the powering method to get the n-th

Fibonacci algorithm in θ(logn).

•
(
Fn+1 Fn

Fn Fn−1

)
=
(

Fn + Fn−1 Fn

Fn−1 + Fn−2 Fn−1

)
• =

(
Fn Fn−1

Fn−1 Fn−2

)
·
(
1 1
1 0

)
• Thus, we have

•
(
Fn+1 Fn

Fn Fn−1

)
=

(
1 1
1 0

)n

G(n)
1. If n is even, G(n) = G(n

2
) ·G(n

2
)

2. Otherwise n is odd, G(n) = G(n
2
) ·G(n

2
) ·

(
1 1
1 0

)
3. Extract Fn from the answer G(n).

Analysis: Matrix Multiplication Fibonacci

1. Dividing and combining takes O(1) time.
2. Recurrence relation: T (n) = T (n

2
) + θ(1)

3. Hence time taken is θ(logn)

Strassen’s Matrix Multiplication

• Standard matrix multiplication algorithm takes θ(n3) time

MAT-MULT(A, B)
Initialize C[i][j]
For i = 1 to n
For j = 1 to n

C[i][j] = 0
For k = 1 to n

C[i][j] = c[i][j] + A[i][k] * B[k][j]
return C

• Strassen’s smart idea is shown below
•
(
r s
t u

)
=

(
a b
c d

)
·
(
e f
g h

)
• P1 = a · (f − h)
• P2 = (a+ b) · h
• P3 = (c+ d) · e
• P4 = d · (g − e)
• P5 = (a+ d) · (e+ h)
• P6 = (b− d) · (g + h)
• P7 = (a− c) · (e+ f)
• r = P5 + P4 − P2 + P6

• s = P1 + P2

• t = P3 + P4

• u = P5 + P1 − P3 − P7

• Strassen’s matrix multiplication needs 7 multiplication of
matrices = of size n

2
and 18 additions.

• Divide: Divide A and B into (n
2
) by (n

2
) submatrices.

• Conquer: Perform 7 matrix multiplications of size n
2

.
• Combine: Do the additions / subtractions as mentioned.
• Recurrence Relation: 7T (n

2
) + θ(n2)

• By master theorem, T (n) = θ(nlog2 7) ≈ θ(n2.81)

04. SORTING ANALYSIS

a. Comparison based sorting (Lower bound)

The best worst case running time for comparison based
sorting is O(n logn).

• Any comparison based sorting algorithm can be modelled
using a decision tree.

• One tree for each input of size n. (n element to be sorted)
• View each branch of the tree (from root to a leaf) as the

comparisons done by the algorithm based on the results
of earlier comparisons.

• Leaves denote the sorted list output by the algorithm
based on the results of the comparisons done in the
corresponding branch.

• Worst case running time (number of comparisons done) is
the longest path from root to leaf.

Proof. Any comparison based sorting algorithm takes at
least Ω(n logn) time.

1.Model the algorithm as a tree. The tree must
contain at least n! leaves for every possible
permutation.

2.The height of the binary tree is thus at least
log(n!)

3.log (n!) = n logn+O(logn) (Stirling’s)
4.log (n!) ∈ Ω(n logn)

b. Average Case Analysis
• average case A(n) → expected running time when the

input is chosen uniformly at random from the set of all n!
permutations
• A(n) = 1

n!

∑
π Q(π) where Q(π) is the time

complexity when the input is permutation π.
• A(n) = E

x∼Dn

[Runtime of Alg on x]

• Ex∼Dn is a probability distribution on U restricted to
inputs of size n.

Quicksort Analysis
• divide & conquer, linear-time Θ(n) partitioning subroutine
• assume we select the first array element as pivot
• T (n) = T (j) + T (n− j − 1) + Θ(n)

• if the pivot produces subarrays of size j and (n− j− 1)
• worst-case: T (n) = T (0)+T (n−1)+Θ(n) ⇒ Θ(n2)

Proof. for quicksort, A(n) = O(n logn)

let P (i) be the set of all those permutations of
elements {e1, e2, . . . , en} that begins with ei.
Let G(n, i) be the average running time of quicksort
over P (i). Then
G(n) = A(i− 1) +A(n− i) + (n− 1).
A(n) = 1

n

∑n
i=1 G(n, i)

= 1
n

∑n
i=1(A(i− 1) +A(n− i) + (n− 1))

= 2
n

∑n
i=1 A(i− 1) + n− 1

= O(n logn) by taking it as area under
integration

quicksort vs mergesort
average best worst

quicksort 1.39n lgn n lgn n(n− 1)
mergesort n lgn n lgn n lgn

• disadvantages of mergesort:
• overhead of temporary storage
• cache misses

• advantages of quicksort
• in place
• reliable (as n ↑, chances of deviation from avg case ↓)

• issues with quicksort
• distribution-sensitive → time taken depends on the

initial (input) permutation

c. Linear Time Sorting
Counting Sort
• No comparisons made between elements
• Input array: A[1..n], where A[i] ∈ 1, 2, . . . , k
• Output array: B[1..n] (sorted)

• Use C[1..k] for intermediate steps
• If k = O(n), then counting sort takes θ(n) time.

for i = 1 to k:
C[i] = 0

for j = 1 to n:
C[A[j]] = C[A[j]] + 1

for i = 2 to k:
C[i] = C[i] + C[i - 1]

for j = n downto 1:
B[C[A[j]]] = A[j]
C[A[j]] = C[A[j]] - 1

Radix Sort
Suppose there are T digits.
for i = 1 to T:

sort by the ith least significant bit
using counting sort

• T passes
• Each pass takes θ(n+ k) time, where numbers are

between 1 to k
• If b−bit word is broken into b

r
groups of r bit words, then

• There are b
r

passes
• Each pass takes θ(n+ 2r)
• Total time: θ(b

r
(n+ 2r))

• Choose r to minimize the above. Optimal r is about logn
• 2logn = n; θ(b

logn
· 2n) = θ(bn

logn
)

• If the numbers are in the range 1 to nd, then b = d logn.
Radix sort runs in θ(dn).

Correctness of Radix Sort
• Prove by induction that when we have sorted the least

significant t digits, then the numbers are sorted according
to their values on the least significant t−digits.

• P (1) holds. The first pass of radix sort will sort based on
the least significant digit.

• Suppose P (k − 1) holds. Then show P (k):
• Clearly the numbers are sorted based on the k-th least

significant digit by the k−th pass.
• Due to stable sort, within the same k−th least significant

digit, the algorithm doesn’t change their relative
position!

• Thus, the numbers are sorted within the groups of having
the same k−th least significant digit.

05.RANDOMISED ALGORITHMS
• randomised algorithms → output and running time are

functions of the input and random bits chosen
• vs non-randomised: output & running time are functions

of the input only
• expected running time = worst-case running time =
E(n) = max

input x of size n
E[Runtime of RandAlg on x]

• randomised quicksort: choose pivot at random
• probability that the runtime of randomised quicksort

exceeds average by x% = n− x
100

ln lnn

• P(time takes at least double of the average) = 10−15

• distribution insensitive

Randomised Quicksort Analysis
T (n) = n− 1 + T (q − 1) + T (n− q)
Let A(n) = E[T (n)] where the expectation is over the
randomness in expectation.
Taking expectations and applying linearity of expectation:
A(n) = n− 1 + 1

n

∑n
q=1(A(q − 1) +A(n− q))

= n− 1 + 2
n

n−1∑
q=1

A(q)

A(n) = n logn ⇒ same as average case quicksort

Randomised Quickselect
• O(n) to find the kth smallest element
• randomisation: unlikely to keep getting a bad split

Types of Randomised Algorithms
• randomised Las Vegas algorithms

• output is always correct
• runtime is a random variable
• e.g. randomised quicksort, randomised quickselect

• randomised Monte Carlo algorithms
• output may be incorrect with some small probability
• runtime is deterministic

examples
• smallest enclosing circle: given n points in a plane,

compute the smallest radius circle that encloses all n
points
• best deterministic algorithm: O(n), but complex
• Las Vegas: average O(n), simple solution

• minimum cut: given a connected graph G with n vertices
and m edges, compute the smallest set of edges whose
removal would disconnect G.
• best deterministic algorithm: O(mn)
• Monte Carlo: O(m logn), error probability n−c for

any c
• primality testing: determine if an n bit integer is prime

• best deterministic algorithm: O(n6)
• Monte Carlo: O(kn2), error probability 2−k for any k

Geometric Distribution
Let X be the number of trials repeated until success.
X is a random variable and follows a geometric distribution
with probability p.

Expected number of trials, E[X] = 1
p

Pr[X = k] = qk−1p

Linearity of Expectation
For any two events X,Y and a constant a,

E[X + Y] = E[X] + E[Y]
E[aX] = aE[X]

Coupon Collector Problem
n types of coupon are put into a box and randomly drawn
with replacement. What is the expected number of draws
needed to collect at least one of each type of coupon?
• let Ti be the time to collect the i-th coupon after the i− 1

coupon has been collected.
• Probability of collecting a new coupon, pi = (n−(i−1))

n
• Ti has a geometric distribution
• E[Ti] = 1/pi

• total number of draws, T =
n∑

i=1
Ti

• E[T] = E[
n∑

i=1
Ti] =

n∑
i=1

E[Ti] by linearity of expectation

=
n∑

i=1

n
n−(i−1)

= n ·
n∑

i=1

1
i
= Θ(n lgn)

06. DYNAMIC PROGRAMMING
• cut-and-paste proof → proof by contradiction - suppose

you have an optimal solution. Replacing (”cut”)
subproblem solutions with this subproblem solution
(”paste” in) should improve the solution. If the solution
doesn’t improve, then it’s not optimal (contradiction).

• overlapping subproblems - recursive solution contains a
small number of distinct subproblems repeated many
times

Longest Common Subsequence
• for sequence A : a1, a2, . . . , an stored in array
• C is a subsequence of A → if we can obtain C by

removing zero or more elements from A.
problem: given two sequences A[1..n] and B[1..m],
compute the longest sequence C such that C is a
subsequence of A and B.

brute force solution
• check all possible subsequences of A to see if it is also a

subsequence of B, then output the longest one.
• analysis: O(m2n)

• checking each subsequence takes O(m)
• 2n possible subsequences

recursive solution

let LCS(i, j): longest common subsequence of A[1..i] and
B[1..j]

• base case: LCS(i, 0) = ∅ for all i, LCS(0, j) = ∅ for all
j

• general case:
• if last characters of A,B are an = bm, then
LCS(n,m) must terminate with an = bm
• the optimal solution will match an with bm

• if an ̸= bm, then either an or bm is not the last symbol
• optimal substructure: (general case)

• if an = bm,
LCS(n,m) = LCS(n− 1,m− 1) :: an

• if an ̸= bm,
LCS(n,m) = LCS(n− 1,m) || LCS(n,m− 1)

• simplified problem:
• L(n,m) = 0 if n = 0 or m = 0
• if an = bm, then L(n,m) = L(n− 1,m− 1) + 1
• if an ̸= bm, then
L(n,m) = max(L(n,m− 1), L(n− 1,m))

analysis
• number of distinct subproblems = (n+ 1)× (m+ 1)
• to use O(min{m,n}) space: bottom-up approach,

column by column
• memoize for DP ⇒ makes it O(mn) instead of

exponential time

Knapsack Problem
• input: (w1, v1), (w2, v2), . . . , (wn, vn) and capacity W
• output: subset S ⊆ {1, 2, . . . , n} that maximises∑

i∈S vi such that
∑

i∈S wi ≤ W

• 2n subsets ⇒ naive algorithm is costly
• recursive solution:

• let m[i, j] be the maximum value that can be obtained
using a subset of items {1, 2, . . . , i} with total weight
no more than j.

• m[i, j] =
0, if i = 0 or j = 0

max{m[i−1,j−wi]+vi,m[i−1,j]}, if wi ≤ j

m[i− 1, j], otherwise
• analysis: O(nW)

• ! O(nW) is not a polynomial time algorithm
• not polynomial in input bitsize

• W can be represented in O(lgW) bits
• n can be represented in O(lgn) bits

• polynomial time is strictly in terms of the number of bits
for the input

Changing Coins
problem: use the fewest number of coins to make up n
cents using denominations d1, d2, . . . , dn. Let M [j] be the
fewest number of coins needed to change j cents.
• optimal substructure:

• M [j] =

1 + min

i∈[k]
M [j − di], j > 0

0, j = 0

∞, j < 0

Proof. Suppose M [j] = t, meaning
j = di1 + di2 + · · ·+ dit for some
i1, . . . , it ∈ {1, . . . , k}.
Then, if j′ = di1 + di2 + · · ·+ dit−1,
M [j′] = t− 1, because otherwise if
M [j′] < t− 1, by cut-and-paste argument,
M [j] < t.

• runtime: O(nk) for n cents, k denominations

07. GREEDY ALGORITHMS
• solve only one subproblem at each step
• beats DP and divide-and-conquer when it works
• greedy-choice property → a locally optimal choice is

globally optimal

Examples
Fractional Knapsack
• O(n logn)
• greedy-choice property: let j∗ be the item with

maximum value/kg, vj/wi. Then there exists an optimal
knapsack containing min(wj∗ ,W) kg of item j∗.

• optimal substructure: if we remove w kg of item j from
the optimal knapsack, then the remaining load must be the
optimal knapsack weighing at most W − w kgs that one
can take from n− 1 original items and wj − w kg of item
j.

Proof. cut-and-paste argument

Suppose the remaining load after removing w kgs of
item j was not the optimal knapsack weighing ...

Then there is a knapsack of value > X − vj · w
wj

with weight ...

Combining this knapsack with w kg of item j gives a
knapsack of value > X ⇒ contradiction!

Minimum Spanning Trees

for a connected, undirected graph G = (V,E), find a
spanning tree T that connects all vertices with minimum
weight. Weight of spanning tree T ,
w(T) =

∑
(u,v)∈T

w(u, v).

• optimal substructure: let T be a MST. remove any edge
(u, v) ∈ T . then T is partitioned into T1, T2 which are
MSTs of G1 = (V1, E1) and G2 = (V2, E2).

Proof. cut-and-paste: w(T) = w(u, v) +w(T1) +w(T2)

if w(T ′
1) < w(T1) for G1, then

T ′ = {(u, v)} ∪ T ′
1 ∪ T2 would be a lower-weight

spanning tree than T for G.

⇒ contradiction, T is the MST

• Prim’s algorithm - at each step, add the least-weight
edge from the tree to some vertex outside the tree

• Kruskal’s algorithm - at each step, add the least-weight
edge that does not cause a cycle to form

Binary Coding

Given an alphabet set A : {a1, a2, . . . , an} and a text file
F (sequence of alphabets), how many bits are needed to
encode a text file with m characters?

• fixed length encoding: m · ⌈log2 n⌉
• encode each alphabet to unique binary string of length
⌈log2 n⌉

• total bits needed for m characters = m · ⌈log2 n⌉
• variable length encoding

• different characters occur with different frequency ⇒
use fewer bits for more frequent alphabets

• average bit length, ABL(γ) =
∑
x∈A

f(x) · |γ(x)|

• BUT overlapping prefixes cause indistinguishable
characters

Prefix coding
• a coding γ(A) is a prefix coding if ̸ ∃x, y ∈ A such that
γ(x) is a prefix of γ(y).

• labelled binary tree: γ(A) = label of path from root

• for each prefix code A of n alphabets, there exists a
binary tree T on n leaves such that there is a bijective
mapping between the alphabets and the leaves

• ABL(γ) =
∑
x∈A

f(x) · |γ(x)| =
∑
x∈A

f(x) · |depthT (x)|

• the binary tree corresponding to an optimal prefix coding
must be a full binary tree.
• every internal node has degree exactly 2
• multiple possible optimal trees - most optimal depends

on alphabet frequencies
• accounting for alphabet frequencies:

• let a1, a2, . . . , an be the alphabets of A in
non-decreasing order of their frequencies.

• a1 must be a leaf node; a2 can be a sibling of a1.
• there exists an optimal prefix coding in which a1 and a2

are siblings
• derivation of optimal prefix coding: Huffman’s algorithm

• keep merging the two least frequent items
Huffman(C):
Q = new PriorityQueue(C)
while Q:
allocate a new node z
z.left = x = extractMin(Q)
z.right = y = extractMin(Q)
z.val = x.val + y.val
Q.add(z)

return extractMin(Q) // root

08. AMORTIZED ANALYSIS
• amortized analysis → guarantees the average

performance of each operation in the worst case.
• total amortized cost provides an upper bound on the total

true cost
• For a sequence of n operations o1, o2, . . . , on,

• let t(i) be the time complexity of the i-th operation oi
• let f(n) be the worst-case time complexity for any of

the n operations
• let T (n) be the time complexity of all n operations

T (n) =
∑n

i=1 t(i) = nf(n)

Types of Amortized Analysis
Aggregate method
• look at the whole sequence, sum up the cost of operations

and take the average - simpler but less precise
• e.g. binary counter - amortized O(1)
• e.g. queues (with INSERT and EMPTY) - amortized O(1)

Accounting method
• charge the i-th operation a fictitious amortized cost c(i)

• amortized cost c(i) is a fixed cost for each operation
• true cost t(i) depends on when the operation is called

• amortized cost c(i) must satisfy:∑n
i=1 t(i) ≤

∑n
i=1 c(i) for all n

• take the extra amount for cheap operations early on as
”credit” paid in advance for expensive operations
• invariant: bank balance never drops below 0

• the total amortized cost provides an upper bound on the
total true cost

Potential method
• ϕ : potential function associated with the algo/DS
• ϕ(i): potential at the end of the i-th operation
• ci : amortized cost of the i-th operation
• ti : true cost of the i-th operation

ci = ti + ϕ(i)− ϕ(i− 1)∑n
i=1 ci = ϕ(n)− ϕ(0) +

∑n
i=1 ti

• hence as long as ϕ(n) ≥ 0, then amortized cost is an
upper bound of the true cost.∑n

i=1 ci ≥
∑n

i=1 ti

• usually take ϕ(0) = 0
• e.g. for queue:

• let ϕ(i) = # of elements in queue after the i-th operation
• amortized cost for insert:
ci = ti + ϕ(i)− ϕ(i− 1) = 1 + 1 = 2

• amortized cost for empty (for k elements):
ci = ti + ϕ(i)− ϕ(i− 1) = k + 0− k = 0

• try to keep c(i) small: using c(i) = t(i) + ∆ϕi

• if t(i) is small, we want ∆ϕi to be positive and small
• if t(i) is large, we want ∆ϕi to be negative and large

e.g. Dynamic Table (insertion only)
Aggregate method

cost of n insertions =∑n
i=1 t(i) ≤ n+

∑⌊log(n−1)⌋
j=1 2j ≤ 3n

Accounting method
• charge $3 per insertion

• $1 for insertion itself
• $1 for moving itself when the table expands
• $1 for moving one of the existing items when the table

expands
Potential method

let ϕ(i) = 2i− size(T)

• show that SUM of amortized cost ≥ SUM of actual cost
• conclude that sum of amortized cost is O(f(n)) ⇒ sum

of actual cost is O(f(n))

09. REDUCTIONS &
INTRACTABILITY
Reduction
Consider two problems A and B, A can be solved as
follows:
1. convert instance α of A to an instance of β in B
2. solve β to obtain a solution
3. based on the solution of β, obtain the solution of α.
4. ⇒ then we say A reduces to B.

instance → another word for input

e.g. Matrix Multiplication & Squaring
• Mat-Multi: matrix multiplication

• input: two N ×N matrices A and B.
• output: A×B

• Mat-Sqr: matrix squaring
• input: one N ×N matrix C. output: C × C

• Mat-Sqr can be reduced to Mat-Multi
• Proof. Given input matrix C for Mat-Sqr, let A = C

and B = C be inputs for Mat-Multi. Then AB = C2.
• Mat-Multi can also be reduced to Mat-Sqr!

• Proof. let C =
[

0 A
B 0

]
⇒ C2 =

[
0 A
B 0

] [
0 A
B 0

]
=

[
AB 0
0 BA

]
T-Sum
• 0-Sum: given array A, output i, j ∈ (1, n) such that
A[i] +A[j] = 0

• T-Sum: given array B, output i, j ∈ (1, n) such that
B[i] +B[j] = T

• reduce T-Sum to 0-Sum:
• given array B, define array A s.t. A[i] = B[i]− T/2.
• if i, j satisfy A[i] +A[j] = 0, then B[i] +B[j] = T .

p(n)-time Reduction
• p(n)-time Reduction → if for any instance α of problem
A of size n,
• an instance β for B can be constructed in p(n) time
• a solution to problem A for input α can be recovered

from a solution to problem B for input β in time p(n).
• ! n is in bits!
• if there is a p(n)-time reduction from problem A to B and

a T (n)-time algorithm to solve problem B, then there is a
T (O(p(n))) +O(p(n)) time algorithm to solve A.

• A ≤P B → if there is a p(n)-time reduction from A to B
for some polynomial function p(n) = O(nc) for some
constant c. (”A is a special case of B”)
• if B has a polynomial time algorithm, then so does A
• ”polynomial time” ≈ reasonably efficient

• A ≤P B,B ≤P C ⇒ A ≤P C

Polynomial Time
• polynomial time → runtime is polynomial in the length

of the encoding of the problem instance
• ”standard” encodings

• binary encoding of integers
• list of parameters enclosed in braces (graphs/matrices)

• pseudo-polynomial algorithm → runs in time polynomial
in the numeric value if the input but is exponential in the
length of the input
• e.g. DP algo for Knapsack since W is in numeric value

• Knapsack is NOT polynomial time: O(nW logM) but W
is not the number of bits

• Fractional Knapsack is polynomial time:
O(n logn logW logM)

Decision Problems
• decision problem → a function that maps an instance

space I to the solution set {Y ES,NO}
• decision vs optimisation problem:

• decision problem: given a directed graph G, is there a
path from vertex u to v of length ≤ k?

• optimisation problem: given ..., what is the length of
the shortest path ... ?

• convert from decision → optimisation: given an
instance of the optimisation problem and a number k, is
there a solution with value ≤ k?

• the decision problem is no harder than the optimisation
problem.
• given the optimal solution, check that it is ≤ k.
• if we cannot solve the decision problem quickly ⇒ then

we cannot solve the optimisation problem quickly
• decision ≤P optimisation

Reductions between Decision Problems
given two decision problems A and B, a polynomial-time
reduction from A to B denoted A ≤P B is a
transformation from instances α of A and β of B such that
1. α is a YES-instance of A ⇐⇒ β is a YES-instance of

B
2. the transformation takes polynomial time in the size of α

Examples
• Independent-Set: given a graph G = (V,E) and an

integer k, is there a subset of ≤ k vertices such that no 2
are adjacent?

• Vertex-Cover: given a graph G = (V,E) and an integer
k, is there a subset of ≤ k vertices such that each edge is
incident to at least one vertex in this subset?

• Independent-Set ≤P Vertex-Cover

• Reduction: to check whether G has an independent set
of size k, we check whether G has vertex cover of size
n− k.

Proof. If Independent-Set, then Vertex-Cover.
Suppose (G, k) is a YES-instance of Indep-Set.
Then there is subset S of size ≥ k that is an
independent set.
V − S is a vertex cover of size ≤ n− k. Proof: Let
(u, v) ∈ E. Then u ̸∈ S or v ̸∈ S.
So either u or v is in V − S, the vertex cover.

Proof. If Vertex-Cover, then Independent-Set.
Same as above, but flip IS and VC

e.g. Set-Cover

Given integers k and n, and collection S of subsets of
{1, . . . , n}, are there ≤ k of these subsets whose union
equals {1, . . . , n}?
Claim: Vertex-Cover ≤P Set-Cover
Reduction: given (G, k) instance of Vertex-Cover,
generate an instance (n, k′,S) of Set-Cover.

Proof. For each node v in G, construct a set Sv containing
all its outgoing edges. (Number each edge)

e.g. 3-SAT
• SAT: given a CNF formula Φ, does it have a satisfying

truth assignment?
• literal: a boolean variable or its negation x, x̄
• clause: a disjunction (OR) of literals
• conjunctive normal form (CNF): formula Φ that is a

conjunction (AND) of clauses
• 3-SAT → SAT where each clause contains exactly 3

literals
• 3-SAT ≤P Independent-Set

• Reduction: Construct an instance (G, k) of Indep-Set
s.t. G has an independent set of size k ⇐⇒ Φ is
satisfiable
• node: each literal term
• edge: connect 3 literals in a clause in a triangle
• edge: connect literal to all its negations
• reduction runs in polynomial time

• ⇒ for k clauses, connecting k vertices form an
independent set in G.

10. NP-COMPLETENESS
• P → the class of decision problems solvable in

(deterministic) polynomial time
• NP → the class of decision problems for which

polynomial-time verifiable certificates of YES-instances
exist.
• aka non-deterministic polynomial
• i.e. no poly-time algo, but verification can be poly-time
• certificate → result that can be checked in poly-time

to verify correctness
• P ⊆ NP : any problem in P is in NP.

• if P = NP , then all these algos can be solved in poly
time

NP-Hard and NP-Complete
• a problem A is said to be NP-Hard if for every problem
B ∈ NP , B ≤P A.
• aka A is at least as hard as every problem in NP.

• a problem A is said to be NP-Complete if it is in NP and is
also NP-Hard
• aka the hardest problems in NP.

• Cook-Levin Theorem → every problem in NP-Hard can
be poly-time reduced to 3-SAT. Hence, 3-SAT is NP-Hard
and NP-Complete.

• NP-Complete problems can still be approximated in
poly-time! (e.g. greedy algorithm gives a 2-approximation
for Vertex-Cover)

showing NP-Completeness
1. show that X is in NP. ⇒ a YES-instance has a

certificate that can be verified in polynomial time
2. show that X is NP-hard

• by giving a poly-time reduction from another NP-hard
problem A to X. ⇒ X is at least as hard as A

• reduction should not depend on whether the instance
of A is a YES- or NO-instance

3. show that the reduction is valid
3.1. reduction runs in poly time
3.2. if the instance of A is a YES-instance, then the

instance of X is also a YES-instance
3.3. if the instance of A is a NO-instance, then the

instance of X is also a NO-instance

showing NP-HARD
1. take any NP-Complete problem A
2. show that A ≤P X

11. ORDER STATISTICS
Selection / Order Statistics
• Given an unsorted list we want to find the i-th smallest

element in the list.
• i = 1 is minimum and i = n is maximum.
• To get median, we need i = ⌊n+1

2
⌋ or i = ⌈n+1

2
⌉

• Naive Solution: Sort and return the i-th element in the
sorted list. This takes θ(n logn) time.

• Can we do in worst case O(n) time?

What we know
• Selecting the i-th elements require ≥ n steps, otherwise

there must be some element x which was not seen by our
algorithm.

• If we have seen less than n elements, then whatever the
order among the other elements, it is not possible to say if
x is the i-th smallest element because we can be x above
or below other elements.

• We can find the maximum or minimum element in an array
of n elements in θ(n) time and that naive algorithm is the
best possible.

Linear Time Selection
• (Blum, Floyd, Pratt, Rivest, Tarjan, 1973) created the worst

case linear time algorithm to select the rank-i element.
• In this problem, we assume that all elements are distinct

(otherwise for equal elements distinguish them based on
the location they were originally stored.)

• That is consider the element originally at A[i], as (A[i], i).
• Suppose A[i] = aandA[j] = b. Then we compare
(a, i) < (b, j) if a < b or if a = b then i < j.

Select(i, n, A):
1. Divide the array A into ⌈n

5
⌉ groups of 5 elements each.

2. Let B be the set of ⌈n
5
⌉ elements of the medians of

each of the above groups.
3. Recursively find the median x of B by calling

Select(n
10

, n
5
, B)

4. Partition A and pivot around x. Let k be the rank of x
and A′ and A′′ be the list of elements < x and > x
respectively.

5. If i = k, then return x.
6. Else if i < k, then return Select(i, k − 1, A′)
7. Else i > k, then return Select(i− k, n− k,A′′)

End

• B = The group of median elements from the ⌈n
5
⌉

• There are ⌈n
5
⌉ groups of 5 elements.

• For each group of 5 elements, find the median element.
• In total, the size of B is ⌈n

5
⌉.

Analysis of Linear Time Selection
1. Steps 1, 2, 4, 5 takes c1n time for some constant c1.
2. Step 3 takes T (n

5
) time to recursively find the median

element of n
5

elements.
3. Steps 6 or 7: Note that at least ⌊n

5
⌋ of the groups have

at least 5 elements. (if n is not a multiple of 5)
4. At least ⌊ ⌊n

5
⌋

2
⌋ of these group medians are ≤ x and

respectively ≥ x.
5. Thus, there are at least 3× ⌊ n

10
⌋ elements which are at

at most / at least x.
6. Thus, Step 6 (or 7) takes at most T (7n

10
).

1. Suppose x was the median element of group of ⌊n
5
⌋

median elements.
2. Within the group of ⌊n

5
⌋ median elements, there are

⌊ ⌊n
5
⌋

2
⌋ median elements smaller than x.

3. Within the group of median elements, for each median
element m, there are 2 elements in m’s group that is
smaller than m.

4. Hence, in the worst case, there are at most 3× ⌊ n
10

⌋
elements smaller than x.

Analysis Continued
1. We can write the recurrence relation for the algorithm

as follows: T (n) ≤ T (n
5
) + T (7n

10
) + c1n

2. Using the substitution method, we take T (n) < c2n,
for some large enough c2. Take c2 > 10c1.

3. Base Cases: n ≤ 1000. This holds for large enough c2
4. Induction: c2(n5) + c2(

7n
10

) + c1n ≤ c2n

4.1. 9c2n
10

+ c1n ≤ c2n
4.2. c1n ≤ c2n

10
4.3. Hence the induction holds by choice of c2 > 10c1

5. Thus, the i-th element can be found in θ(n) time.

Helpful Approximations
arithmetic series:

∑n
k=1 k = 1 + 2 + 3 + · · ·+ n = 1

2
· n(n+ 1)

geometric series:
∑n

k=1 x
k = 1 + x+ x2 + · · ·+ xn = xn+1−1

x−1∑inf
k=1 x

k = 1 + x+ x2 + · · ·+ xn = 1
1−x

when |x| < 1

stirling’s approximation: T (n) =
n∑

i=0
log(n− i) = log

∏n
i=0(n− i) = Θ(n logn)

n! =
√
2πn(n

e
)n(1 + θ(1

n
))

log (n!) = θ(n logn)

harmonic number, Hn =
n∑

k=1

1
k
= Θ(lgn)

basel problem:
N∑

n=1

1
n2 ≤ 2− 1

N

N→∞−−−−→ 2

because
∑N

n=1
1

N2 ≤ 1 +
∑log3 n

x=2
1

(x−1)x
= 1 +

∑N
n=2(

1
n−1

− 1
n
) = 1 + 1− 1

N
= 2− 1

N

number of primes in range {1, . . . ,K} is > K
lnK

Logarithm Identities
a = blogb a

logc ab = logc a+ logc b
logb a

n = n logb a

logb a =
logc a
logc b

logb
1
a
= − logb a

logb a = 1
loga b

alog bc = clogb a

Base of logarithm does not matter in asymptotics: logn = θ(lnn) = θ(log10 n)
Whereas exponentials of different bases differ by an exponential factor: 4n = 2n · 2n

Asymptotic Bounds
1 < logn <

√
n < n < n logn < n2 < n3 < 2n < 22n

loga n < na < an < n! < nn

for any a, b > 0, loga n < nb

multiple parameters
for two functions f(m,n) and g(m,n), we say that f(m,n) = O(g(m,n)) if there exists constants c,m0, n0 such that
0 ≤ f(m,n) ≤ c · g(m,n) for all m ≥ m0 or n ≥ n0.

set notation
O(g(n)) is actually a set of functions. f(n) = O(g(n)) means f(n) ∈ O(g(n))
• O(g(n)) = {f(n) : ∃c, n0 > 0 | ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n)}
• Ω(g(n)) = {f(n) : ∃c, n0 > 0 | ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n)}
• Θ(g(n)) = {f(n) : ∃c1, c2, n0 > 0 | ∀n ≥ n0, 0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n)} = O(g(n)) ∩ Ω(g(n))
• o(g(n)) = {f(n) : ∀c > 0,∃n0 > 0 | ∀n ≥ n0, 0 ≤ f(n) < cg(n)}
• ω(g(n)) = {f(n) : ∀c > 0, ∃n0 > 0 | ∀n ≥ n0, 0 ≤ cg(n) < f(n)}

example proofs
Proof. that 2n2 = O(n3)

let f(n) = 2n2. then f(n) = 2n2 ≤ n3 when n ≥ 2.
set c = 1 and n0 = 2.
we have f(n) = 2n2 ≤ c · n3 for n ≥ n0.

Proof. n = o(n2)

For any c > 0, use n0 = 2/c.

Proof. n2 − n = ω(n)

For any c > 0, use n0 = 2(c+ 1).

Example. let f(n) = n and g(n) = n1+sin(n).
Because of the oscillating behaviour of the sine function, there is no n0 for which f dominates g or vice versa.
Hence, we cannot compare f and g using asymptotic notation.

Example. let f(n) = n and g(n) = n(2 + sin(n)).
Since 1

3
g(n) ≤ f(n) ≤ g(n) for all n ≥ 0, then f(n) = Θ(g(n)). (note that limit rules will not work here)

Mentioned Algorithms
• ch.3 - Euclidean - efficient computation of GCD of two integers
• ch.3 - Tower of Hanoi - T (n) = 2n − 1

1. move the top n− 1 discs from the first to the second peg using the third as temporary storage.
2. move the biggest disc directly to the empty third peg.
3. move the n− 1 discs from the second peg to the third using the first peg for temporary storage.

• ch.3 - MergeSort - T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + Θ(n)
• ch.3 - Karatsuba Multiplication - multiply two n-digit numbers x and y in O(nlog2 3)

• worst-case runtime: T (n) = 3T (⌈n/2⌉) + Θ(n)

Uncommon Notations
• ⊥ - false

Probability
sample space: S (Example for a dice: S = 1, 2, 3, 4, 5, 6)
event: a subset of the sample space S (Example: Let A be the event we roll an even number from a fair die: A = 2, 4, 6)
Let P denote the probability distribution of an event.
• P (A) ≥ 0
• P (S) = 1
• P (A ∪B) = P (A) + P (B)− P (A ∩B) when events A and B are not mutually exclusive.
• P (A ∪B) = P (A) + P (B) for any two mutually exclusive (P (A ∩B) = ∅) events A and B.
• P (A ∩B) = P (A) · P (B) when events A and B are independent.
• P (A|B) =

P (A∩B)
P (B)

whenever P (B) ̸= 0

• Bayes theorem: P (A|B) =
P (A)·P (B|A)

P (B)
=

P (A)·P (B|A)
P (A)·P (B|A)+P (A′)·P (B|A′)

• A random variable X is a function that maps the sample space S to real numbers.
• The function f(x) = P (X = x) is the probability density function of X.
• Example: When rolling a pair of dice, we let X be the max of the twp values shown on the dice.

The sample space contains 62 = 36 events.
P (X = 3) = 5/36 because only the elementary events (1, 3), (2, 3), (3, 3), (3, 2), (3, 1) has the max value 3.

• Expectation or mean of random variable X is E(X) =
∑

x∈S(x · P (X = x))
• Linearity of Expectation: For any two events X, Y (does not matter whether dependent or independent) and a constant
a. E(X + Y) = E(X) + E(Y) E(aX) = a · E(X)

	01. ASYMPTOTIC ANALYSIS
	Asymptotic Notations
	Limits
	Properties of Big O

	02. SOLVING RECURRENCES
	Telescoping method
	example

	Recursion tree
	Master method
	three common cases

	Substitution method
	example

	03. ITERATION, RECURSION, DIVIDE-AND-CONQUER
	Iterative Algorithms
	examples

	Divide-and-Conquer
	Powering a Number
	Fibonacci Numbers
	Strassen's Matrix Multiplication

	04. SORTING ANALYSIS
	a. Comparison based sorting (Lower bound)
	b. Average Case Analysis
	Quicksort Analysis
	quicksort vs mergesort

	c. Linear Time Sorting
	Counting Sort
	Radix Sort
	Correctness of Radix Sort

	05.RANDOMISED ALGORITHMS
	Randomised Quicksort Analysis
	Randomised Quickselect
	Types of Randomised Algorithms

	Geometric Distribution
	Linearity of Expectation
	Coupon Collector Problem

	06. DYNAMIC PROGRAMMING
	Longest Common Subsequence
	brute force solution
	recursive solution

	Knapsack Problem
	Changing Coins

	07. GREEDY ALGORITHMS
	Examples
	Fractional Knapsack
	Minimum Spanning Trees

	Binary Coding
	Prefix coding

	08. AMORTIZED ANALYSIS
	Types of Amortized Analysis
	Aggregate method
	Accounting method
	Potential method
	e.g. Dynamic Table (insertion only)

	09. REDUCTIONS & INTRACTABILITY
	Reduction
	e.g. Matrix Multiplication & Squaring
	T-Sum
	p(n)-time Reduction
	Polynomial Time

	Decision Problems
	Reductions between Decision Problems
	Examples
	e.g. Set-Cover
	e.g. 3-SAT

	10. NP-COMPLETENESS
	NP-Hard and NP-Complete
	showing NP-Completeness
	showing NP-HARD

	11. ORDER STATISTICS
	Selection / Order Statistics
	What we know
	Linear Time Selection
	Analysis of Linear Time Selection
	Analysis Continued

	Helpful Approximations
	Logarithm Identities
	Asymptotic Bounds
	multiple parameters
	set notation
	example proofs

	Mentioned Algorithms
	Uncommon Notations
	Probability

