
CS2109S
AY24/25 SEM 1

01. Introduction to Artificial Intelligence
Properties of the Task Environment

Fully VS Partially Observable Complete or partial access to the state of the
environment?

Deterministic VS Stochastic Is the next state determined by the current state?
Episodic VS Sequential Is each action by the agent independent of the past?
Static VS Dynamic Does the environment when the agent is deliberating?
Discrete VS Continuous Is the number of percept and actions limited?
Single VS Multi Agent Number of agents operating in the environment

• Rational Agent → Chooses action that maximises performance measure

02. Solving Problems with Searching
Problem Formulation
• States: State representation of the problem / current condition of the problem
• Initial State: The initial state the agent starts in.
• Goal State(s) / Test: If we don’t know the exact goal state, use a test to check

for the conditions if the agent has reached the goal state.
• Actions: Things the agent can do
• Transition Model: A description of what each action does to a given state.
• Action Cost Function: The cost of performing an action
State Representation Invariant → Constraints that must remain true across all
possible states of the problem.

Search Algorithms
• Takes in a search problem as input and returns a solution or failure.
• Order of node expansion → The sequence in which nodes (or states) are

explored or expanded during the search process, affected by the underlying
data structure of the frontier.

Evaluation Criteria
• Time Complexity: Number of nodes generated or expanded.
• Space Complexity: Maximum number of nodes in memory.
• Completeness: Does it always return a solution if it exists?
• Optimality: Does it always find the least cost solution?

Measure
• Branching factor (b), Depth (d), Maximum Depth (m)

Tree Search vs Graph Search
• Graph search maintains a list of visited states. Each state is added into the list

of visited states when first visited.
• If a state has been visited, no action is performed.

create frontier
create visited # Only for Graph Search

insert initial state to frontier
while frontier is not empty:

state = frontier.pop()
if state is goal: return solution

if state in visited: continue # Only for Graph Search
visited.add(state) # Only for Graph Search

for action in actions(state):
next state = transition(state , action)
frontier.add(next state)

return failure

Uninformed Search
Type Breath-First Uniform-Cost Depth-First

Frontier Queue Priority Queue (Path Cost) Stack
Time O(bd) O(bC

∗/ϵ) O(bm)

Space O(bd) O(bC
∗/ϵ) O(bm)

Complete Yes if b is finite Yes if ϵ > 0 and C∗ is finite No
Optimal Yes (step cost same) Yes if ϵ > 0 No

• C∗ cost of optimal solution
• ϵ minimum edge cost
• Depth-First Search is not complete when depth is infinite or when we can go

back and forth between states.
• In uniform-cost search, ϵ = 0 may cause zero cost cycle.
Depth-Limited Search
• Limit the search depth to l. (Not complete if solution depth > l)
• For DFS: Backtrack once depth limit is reached.
Iterative Deepening Search
• Do depth-limited search with max-depth 0 · · ·∞
• Return solution if found, increase max-depth otherwise.

Type Depth-Limited Iterative Deepening
Frontier Stack / Queue Stack

Time O(bl) O(bd)
Space O(bl) O(bd)

Complete No Yes
Optimal No Yes (step cost same)

Informed Search
• Frontier: priority queue with an evaluation function f(n) that estimates how

good a state is.
• Heuristic Function h(n): Estimates the cost or distance from a given state n to

the goal state.
• Path Cost g(n): Cost to reach a given state n.

Type Greedy Best First A*
Frontier Priority Queue Priority Queue
f(n) h(n) g(n) + h(n)
Time O(bm) O(bm)

Space O(bm) O(bm)
Complete No Yes
Optimal No Depends on the heuristic

• Best First Search is not complete or not optimal when the heuristic is wrong.

Heuristics
• Admissible → h(n) ≤ h∗(n) for every node n.

• where h∗(n) is the true cost function.
• An admissible heuristic never over-estimates the true cost to reach the goal.
• Theorem: If h(n) is admissible, then A* using tree search is optimal.

• Consistent → h(n) ≤ c(n, a, n′) + h(n′) and h(G) = 0
• c(n, a, n′) is the actual cost of performing an action a that transitions from

state n to state n′.
• h(n′) is the estimated cost or distance of state n′ from the goal state.
• Theorem: If h(n) is consistent, then A* using graph search is optimal.

• Dominance → If h2(n) ≥ h1(n) for all n, then h2 dominates h1.
• If h2 is admissible, then it is closer to h∗(n) and better for search.

03. Local and Adversarial Search
Local Search Characteristics
• To solve problems with very large state space
• A good enough solution is preferrable
• The state is the solution, the search path is not important.

Local Search Formulation
• States (State Space): Often close enough to the solution
• Initial state: Usually start at a random state
• Goal test (optional)
• Successor function: possible states from a state
• Evaluation / Objective functions: output the value / goodness of a state

Hill Climbing Algorithm
• Start somewhere in the state space, move towards a better spot
• Find the maximum value for a given state.
• The state landscape can be a shoulder, global maximum, local maximum or

even flat local maximum
current = initial state
while True:

neighbour = highest valued successor of current
if value(neighbour) <= value(current):

return current
current = neighbour

Escape Techniques
• Simulated Annealing → Allow bad moves from time to time when hill climbing.

current = initial state
T = a large positive value # Temperature
while T > 0:

next = a randomly selected successor of current
if value(next) > value(current):

current = next
else with Probability P(current , next , T):

current = next
decrease T

return current

• Probability Function: P (current, next, T) = e
value(next)−value(current)

T

• Other Techniques: Random Restarts, Random Walk, Tabu Search

Adversarial Search
Adversarial search is often used in fully obseravble, deterministic, two player
turn-based games where the game will definitely terminate.

Problem Formulation
• States (positions), Initital State, Actions (possible moves), Transition
• Terminal States → states where the game ends
• Utility Function → output the value of a state

Minimax
def minimax(state):

v = max_value(state)
return action in succ(state) with value v

def max_value(state)
if is_terminal(state) or is_cutoff(state):

return util(state)
v = −∞
for action , next_state in succ(state):

v = max(v, min_value(next_state))
return v

def min_value(state):
if is_terminal(state) or is_cutoff(state):

return util(state)
v = ∞
for action , next_state in succ(state):

v = min(v, max_value(next_state))
return v

Analysis
• Complete: Yes if tree is finite.
• Time Complexity: O(bm)
• Space Complexity: O(bm), with depth first exploration
• Optimal: Yes, against optimal opponent.

Alpha-beta Pruning
• α = highest value for MAX player
• β = lowest value for MAX player
def alpha_beta_search(state):

v = max_value(state , −∞, ∞)

def max_value(state , α, β)
if is_terminal(state): return util(state)
v = −∞
for action , next_state in succ(state):

v = max(v, min_value(next_state))
α = max(α, v)
if v >= β: return v

return v

def min_value(state , α, β):
if is_terminal(state): return util(state)
v = ∞
for action , next_state in succ(state):

v = min(v, max_value(next_state))
β = min(β, max_value(next_state))
if v <= α: return v

return v

Alpha-beta Pruning: Analysis
• Pruning does not affect the final result
• Good move ordering improves the effectiveness of pruning

• Perfect Ordering: O(b
m
2)

• Pruning is done to the other nodes in a subtree from the MAX player’s
perspective when a leaf node value is greater than β the lowest value for the
MAX player.

• This is because there is no point finding a greater value for the MAX player in
the subtree knowing that the MIN player will choose the lower value β.

04. Intoduction to Machine Learning
Types of Feedback in Machine Learning
• Supervised Learning → Learns from being given the right answers.

• Classification → Predict discrete output (eg: Cat vs Dog)
• Regression → Predict continuous output (eg: Housing Price)

• Unsupervised Learning → No feedback
• Reinforcement Learning → Trial and Error

Formalizing Supervised Learning
• Assume that y the value we are trying to predict is generated by a true

mapping function f : x → y.
• We want to find a hypothesis h : x → ŷ from a hypothesis class H such

that h ≈ f given a training set {(x1, f(x1), . . . , (xN , f(xN)))}.
• We use a learning algorithm A to find the hypothesis

Performance Measures
Regression
• Absolute Error = | ŷ − y |
• Squared Error = (ŷ − y)2

• Mean Absolute Error (MAE) = 1
N

∑N
i=1 | ŷ − y | for N examples

• Mean Squared Error (MSE) = 1
N

∑N
i=1(ŷ − y)2 for N examples

Classification
• Accuracy = 1

N

∑i=1
N 1ŷi=yi

• Confusion Matrix

• Accuracy = TP+TN
TP+FP+TN+FN

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• F1 Score = 2
1

Precision
+ 1

Recall

Decision Trees
• Decision Trees can express any function of the input attributes
• There is a consistent decision tree for any training dataset, but probably won’t

generalize to new examples.
• Decision Trees capture the data perfectly inclduing noise, hence its

performance is perfect on training data but worse on test data.
• Overfitting → Algorithm fits too closely or even exactly to its training data.
• Occam’s Razor → Prefer short/simple is unlikely to be coincidence.

Decision Tree Learning

def DTL(examples , attributes , default):
if examples is empty:

return default
if examples have the same classification:

return classification
if attributes is empty:

return mode(examples)
best = choose_attribute(attributes , examples)
tree = a new decision tree with root best
for each value vi of best:

examplesi = {rows in examples with best = vi}
subtree = DTL(examplesi, attributes - best , mode(examples))
add a branch to tree with label vi and subtree subtree

Choosing the Best Attribute
• Select an attribute that splits the examples into all positive or all negative
• Entropy → measure of randomness in data

• Let v1, v2, . . . vn be n possible values (labels) we are predicting.
• I(P (v1), P (v2), . . . , P (vn)) = −

∑n
i=1 P (vi) log2 P (vi) where P (vi) is

the proportion of examples with the output label vi
• For a dataset containing p positive examples and n negative examples:

• I(p
p+n

, n
p+n

) = − p
p+n

log2
p

p+n
− n

p+n
log2

n
p+n

• Information Gain → Reduction in entropy
• A chosen attribute A divides the training set E into subsets E1, . . . , Ev

according to their values for A, where A has v distinct values.
• remainder(A) =

∑v
i=1

pi+ni
p+n

I(pi
pi+ni

, ni
pi+ni

)

• IG(A) = I(p
p+n

, n
p+n

)− remainder(A)

Addressing Challenges in Training Dataset
• Continuous Value attributes: Define a discrete value input to partition the

values into discrete set of intervals.
• Missing Values:

• Assign most common value of the attribute.
• Assign most common value of the attribute with the same output.
• Assign probabilities to each possible value and sample.
• Drop attribute/rows.

Pruning
• Prevent nodes from being split even when it fails to cleanly seperate examples.
• Results in a smaller tree which may have higher accuracy.
• Min sample leaf: Prune the tree if the number of samples under a leaf node is

less than the specified amount.
• Max depth: Prune the leaves at depth levels > specified max depth.

Formulas

• log2
x
y = log2 x − log2 y

• log2 1 = 0, log2 2 = 1, log2 3 = 1.5849, log2 4 = 2, log2 5 = 2.3219
• log2 6 = 2.5849, log2 7 = 2.8073, log2 8 = 3, log2 9 = 3.1699, log2 10 = 3.3219

Tips and Tricks
Problem Formulation
1. Store only essential information required to describe the state of the problem.
2. Think in terms of what can change when you move from one state to another.
3. Identifying what must remain true across all states.
4. You can try working backwards from the goal state.

Choosing a Search strategy
• The number of goal states
• The distribution of goal states in the search tree
• Finite or infinite branching factor / depth
• Are there repeated states during search?
• Need for optimality? Eg: Least steps
• Need to know if there is no solution?

Ways to check if Heuristic is Admissible
• If h(n) is consistent, then h(n) is also admissible.
• If h(n) is the cost of an optimal solution to a relaxed problem (with fewer

restrictions on actions), then it is an admissible heuristic to the original problem.

	01. Introduction to Artificial Intelligence
	Properties of the Task Environment

	02. Solving Problems with Searching
	Problem Formulation
	Search Algorithms
	Evaluation Criteria
	Measure
	Tree Search vs Graph Search
	Uninformed Search
	Informed Search
	Heuristics

	03. Local and Adversarial Search
	Local Search Characteristics
	Local Search Formulation
	Hill Climbing Algorithm
	Escape Techniques
	Adversarial Search
	Problem Formulation

	Minimax
	Analysis

	Alpha-beta Pruning
	Alpha-beta Pruning: Analysis

	04. Intoduction to Machine Learning
	Types of Feedback in Machine Learning
	Formalizing Supervised Learning
	Performance Measures
	Regression
	Classification

	Decision Trees
	Decision Tree Learning
	Choosing the Best Attribute
	Addressing Challenges in Training Dataset
	Pruning
	Formulas

	Tips and Tricks
	Problem Formulation
	Choosing a Search strategy
	Ways to check if Heuristic is Admissible

