
CS2109S
AY24/25 SEM 1

Artificial Intelligence
Uninformed Search

Type Breath-First Uniform-Cost Depth-First
Frontier Queue Priority Queue (Path Cost) Stack

Time O(bd) O(bC
∗/ϵ) O(bm)

Space O(bd) O(bC
∗/ϵ) O(bm)

Complete Yes if b is finite Yes if ϵ > 0 and C∗ is finite No
Optimal Yes (step cost same) Yes if ϵ > 0 No

• C∗ cost of optimal solution, ϵ minimum edge cost
• In uniform-cost search, ϵ = 0 may cause zero cost cycle.

Type Depth-Limited Iterative Deepening
Frontier Stack Stack

Time O(bl) O(bd)
Space O(bl) O(bd)

Complete No Yes
Optimal No Yes (step cost same)

Informed Search
Type Greedy Best First A*

Frontier Priority Queue Priority Queue
f(n) h(n) g(n) + h(n)
Time O(bm) O(bm)

Space O(bm) O(bm)
Complete No Yes
Optimal No Depends on the heuristic

Heuristics
• Admissible → h(n) ≤ h∗(n) for every node n where h∗(n) is the true cost.

• Thorem: If h(n) is admissible, then A* using tree search is optimal.
• Consistent → h(n) ≤ c(n, a, n′) + h(n′) and h(G) = 0

• Dominance → If h2(n) ≥ h1(n) for all n, then h2 dominates h1.
• If h2 is admissible, then it is closer to the true cost function (better for search)

Machine Learning
Performance Measures
Regression
• Absolute Error = | ŷ − y |
• Squared Error = (ŷ − y)2

• Mean Absolute Error (MAE) = 1
N

∑N
i=1 | ŷ − y | for N examples

• Mean Squared Error (MSE) = 1
N

∑N
i=1(ŷ − y)2 for N examples

Classification
• Accuracy = 1

N

∑i=1
N 1ŷi=yi

• Accuracy = TP+TN
TP+FP+TN+FN

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• F1 Score = 2
1

Precision
+ 1

Recall

Decision Trees
• Entropy → measure of randomness in data

• Let v1, v2, . . . vn be n possible values (labels) we are predicting.
• I(P (v1), P (v2), . . . , P (vn)) = −

∑n
i=1 P (vi) log2 P (vi) where P (vi) is

the proportion of examples with the output label vi
• Information Gain → Reduction in entropy

• A chosen attribute A divides the training set E into subsets E1, . . . , Ev

according to their values for A, where A has v distinct values.
• remainder(A) =

∑v
i=1

|Ei|
|E| · I(Ei)

• IG(A) = Entropy(A)− remainder(A)

• log2
x
y = log2 x − log2 y

• log2 1 = 0, log2 2 = 1, log2 3 = 1.5849, log2 4 = 2, log2 5 = 2.3219
• log2 6 = 2.5849, log2 7 = 2.8073, log2 8 = 3, log2 9 = 3.1699, log2 10 = 3.3219

Linear Regression
• Notations

• n = number of features
• x(i) = input features of the i-th training example
• x(i)

j = value of feature j in the i-th training example
• Hypothesis: hw(x) = w0x0 + w1x1 + w2x2 + · · ·+ wnxn =

∑n
j=0 wjxj

• =

w0

w1

· · ·
wn

T

x0

x1

· · ·
xn

 = wT x where x0 is the bias.

• Loss Function → JMSE(w) = 1
2m

∑i=1
m (hw(x(i))− y(i))2

• Our goal is to find w or the weights w0 to wn that fits the data well.
• Gradient of Loss Function: δJMSE(w)

δwj
= 1

m

∑m
i=1(hw(x(i))− y(i)) · x(i)

j

• Weight Updates: wj ← wj − γ
δJMSE(w0,w1,...,wn)

δwj

• wj ← wj − γ 1
m

∑m
i=1(hw(x(i))− y(i)) · x(i)

j

Gradient Descent → An optimization algorithm for finding a local minimum of a
differentiable function.
1. Start at some w
2. Pick a nearby w that reduce J(w)

• wj ← wj − γ
δJ(w0,w1,...)

δwj
where γ is the learning rate.

3. Repeat until minimum is reached.
• To find the global minimum, the loss function has to be a convex function,

which is a function with one minimum which is the global minimum.
• Theorem: The MSE loss function is convex for linear regression.
• When γ is just nice, as JMSE(w) gets closer to a minimum, the gradient

becomes smaller and the steps become smaller.

Variants of Gradient Descent
• Batch Gradient Descent → Consider all training examples
• Mini-batch Gradient Descent → Consider a subset of training examples.
• Stochastic Gradient Descent → Select one random data point at a time.

• Cheaper per iteration. More randomness, may escape local minima.

Dealing with Features of Different Scales

• Mean Normalization: xj =
xj−µj

σj

• Min-Max scaling and robust scaling.
• Polynomial Regression: hw(x) = w0 +w1f1 +w2f2 + · · ·+wnfn, where
f1 to fn are transformed features. For example: f1 = x, f2 = x2

Normal Equation

• X =

1 X

(1)
1 X

(1)
n

1 X
(2)
1 · · · X

(2)
n

1
...

...
1 X

(m)
1 X

(m)
n

, w =

w0

w1

· · ·
wn

, y =

y(1)

y(2)

· · ·
y(m)

• hw(X) = X · w
• w = (XTX)−1XTY

Logistic Regression
Logistic Function (Sigmoid)
• σ(z) = 1

1+e−z (Treat output as probability between 0 and 1)

Cross-entropy Loss
• Cross-entropy for C classes: CE(y, ŷ) =

∑C
i=1−yi loge ŷi

• Binary cross-entropy: BCE(y, ŷ) = −y loge ŷ − (1− y) log(1− ŷ)
• Binary Cross Entropy (BCE) is a convex function for logistic regression.

Logistic Regression with Gradient Descent
• Hypothesis (for n features):
hw(x) = σ(w0x0 + w1x1 + · · ·+ wnxn) = σ(

∑n
j=0 wjxj) = σ(wT x)

• Loss Function:
• JBCE(w) = 1

m

∑m
i=1 BCE(y(i), hw(x(i)))

• δJBCE(w)
δwj

= δ
δwj

1
m

∑m
i=1 BCE(y(i), hw(x(i)))

• δJBCE(w)
δwj

= 1
m

∑m
i=1(hw(x(i))− y(i)) · x(i)

j

• The gradient of BCE is the same as MSE.
• Weight Update (for n features): wj ← wj − γ

δJBCE(w0,w1,··· ,wn)
δwj

• wj ← wj − γ 1
m

∑m
i=1(hw(x(i))− y(i)) · x(i)

j
• The weight update is also the same as linear regression.
• To deal with a Non-Linear Decision Boundary we apply the logistic function

on the polynomial regression equation.
• hw(x) = σ(w0 + w1f1 + w2f2 + · · ·+ wnfn)
• fn are the transformed features, which can be x1 to xn as n-degree

polynomials. (Eg: f1 = x1, f2 = x2, f3 = x2
1, f4 = x2

2)

Multi-class Classification

One vs All
• Fit one classifer per class, fit against

all other classes
• Pick highest probability
• Linear time in the number of classes.

One vs One

• Fit one classifer per pair
• Pick most wins
•
(n
2

)
classifications for n classes

Receiver Operator Characteristic (ROC) Curve
• ROC curve is a plot of the True Positive Rate against the False Positive Rate
• The model is more accurate than random chance if its ROC curve is above the

diagonal random line.

Area Under Curve of ROC
• AUC > 0.5 means the model is better than chance.
• AUC ≈ 1 means the model is very accurate.

Linear Regression with Regularization
• Hypothesis: hw(x) = wT x
• Cost function: J(w) = 1

2m
[
∑m

i=1(hw(x(i))− y(i))2 + λ
∑n

j=1 w
2
j]

= 1
2m

∑m
i=1(hw(x(i))− y(i))2 + λ

2m

∑n
j=1 w

2
j

• Gradient Descent: wj ← wj − γ 1
m

∑m
i=1(hw(x(i))− y(i))x

(i)
j − γ λ

m
wj

Effect of Regularization
• When λ = 0, reduces to normal linear regression.
• When λ > 0 grows larger, the shrinkage effect of the weights gets bigger.

Logistic Regression with Regularization
• Hypothesis: hw(x) = 1

1+e−wT x

• Cost function: J(w) =
− 1

m

∑m
i=1 y

(i) log(hw(x(i)))+(1−y(i)) log(1−hw(x(i)))+ λ
2m

∑n
j=1 w

2
j

• Gradient Descent: wj ← wj − γ 1
m

∑m
i=1(hw(x(1))− y(i))x

(i)
j − γ λ

m
wj

Hard-margin Support Vector Machine
• Goal: Find a decision boundary that maximises the margin between two

classes of data points.

Decision Rule
• Suppose we have two classes of data points (+ and −)
• Let the decision rule be w · x+ b ≥ 0 then classify that point as a +.
• w represent the weights, x represents the features and b represents the offset.
• We can think of this decision rule as if we are looking at the upper margin line

or how are we going to classify a + data point.
Formulation
• Let b = −c
• w · x ≥ c then + =⇒ w · x+ b ≥ 0 then +
• Assume y(i) = +1 for + samples and y(i) = −1 for − samples
• The constraints for the existing data:

• w · x+ + b ≥ 1
• w · x− + b ≤ −1

• y(i)(w · x(i) + b) ≥ 1 (from the constraints above)
• y(i)(w · x(i) + b)− 1 ≥ 0
• y(i)(w · x(i) + b)− 1 = 0 for all x(i) on the margin
• (w · x(i) + b) = 1

y(i)

• w · x+ + b = +1 and w · x− + b = −1
• w · x+ = 1− b and w · x− = −1− b

Margin

• Margin = (x+ − x−) · w
||w|| = w·x+−w·x−

||w|| =
(1−b)−(−1−b)

||w|| = 2
||w||

Objective
• We want to maximize the margin and also classify the data points correctly.
• The objective function can be formulated as:

max 2
||w|| s.t. y(i)(w · x(i) + b)− 1 ≥ 0

• We can simplify this formulation:

• Maximizing the margin
max 2

||w|| →
1

||w|| → min || w || → min 1
2
|| w ||2

• Classify the data points correctly (assume x(i) is on the margin)
y(i)(w · x(i) + b)− 1 ≥ 0 =⇒ b = y(i) − w · x(i)

If x(i) is correctly classified and on the margin, then y(i) = w · x(i) + b
• The objective function is formulated as a Lagrange function, where α is the

Lagrangian multiplier.
L(w, b, α) = 1

2
|| w ||2 −

∑
i α

(i)[y(i)(w · x(i) + b)− 1], ∀iα(i) ≥ 0
• We want to maximize α and minimize w and b, so we need to find the

stationary points of L where the partial derivatives are 0.
maxα minw,b L(w, b, α)
δL(w,b,α)

δw
= w −

∑
i α

(i)y(i)x(i) = 0 =⇒ w =
∑

i a
(i)y(i)x(i)

δL(w,b,α)
δb

=
∑

i α
(i)y(i) = 0

• Plug back w and b into the Lagrange function to obtain the ”dual” objective.
L(a) =

∑
i α

(i) − 1
2

∑
i

∑
j α

(i)α(j)y(i)y(j)x(i) · x(j)

• Finally, we have the constrained optimization problem
• Primal: min 1

2
|| w ||2 s.t. y(i)(w · x(i) + b)− 1 ≥ 0

• Dual: maxα≥0
∑

i α
(i) − 1

2

∑
i

∑
j α

(i)α(j)y(i)y(j)x(i) · x(j)

Soft-margin Support Vector Machines
• Introduce slack variables and allow for some misclassifications.
• Let ξ(i) be a slack variable for the i-th data point.
• The objective is to maximize the margin and minimize the slacks.

Decision Rule
• w · x+ + b ≥ 1− ξ(i)

• w · x− + b ≥ −1 + ξ(i)

Objective
• Let C be a constant.
• Objective Function: min 1

2
|| w ||2 +C

∑
i ξ

(i) s.t.
y(i)(w · x(i) + b)− 1 ≥ 0− ξ(i), ∀iξ(i) ≥ 0

• ξ(i) ≥ 1− y(i)(w · x(i) + b)
• Objective (Unconstrained):
J(w, b) = 1

2
|| w ||2 +C

∑
i max { 0, 1− y(i)(w · x(i) + b)}

• If C is larger, the effect of penalizing the slack variable ξ(i) is greater, resulting
in less slack.

• If C is smaller, the effect of penalizing the slack variable ξ(i) reduces, resulting
in more slack.

Hinge Loss
• The unconstrained objective function is also called hinge loss.
• We recover the standard notation: b = w0.
• Let cost1 = max {0, 1− z} and cost−1 = max {0, 1 + z}
• J(w) = 1

2

∑n
j=1 w

2
j + C

∑
i max { 0, 1− y(i)(wT x(i))}

• = C
∑

i max { 0, 1− y(i)(wT x(i))}+ 1
2

∑n
j=1 w

2
j

• = C
∑m

i=1(
(1+y(i))

2
cost1(wT x(i))+ 1−y(i)

2
cost−1(wT x(i)))+ 1

2

∑n
j=1 w

2
j

Kernel Methods & Kernel Trick
• Kernel Method → Uses kernel functions to map the feature space to a higher

dimension d using a non-linear kernel.
• Decision boundary becomes a hyperplane of degree (d− 1) in the

transformed space for d ≥ 2.
• Using a feature mapping function ϕ, the decision boundary is now
wTϕ(x) + b ≥ 0.

• Example mappings of ϕ(x) could include [x1x2, x2
1, x

2
2] for data with two

features x1 and x2.
• However, unlike a kernel function, the mapping function ϕ(x) can be

computationally expensive or infeasible for high-dimensional feature spaces.

• Kernel Trick → Allow computation of dot products in the transformed feature
space directly using a kernel function K(u, v) = ϕ(u) · ϕ(v) without explicitly
defining or computing ϕ(u).
• Reduces computational cost and handles infinite-dimensional feature

spaces, such as those used in Gaussian kernels.

Polynomial Kernel
• Polynomial degree 1:

K(u, v) = ϕ(u) · ϕ(v) = [u1, u2]
T · [v1, v2]T = u1v1 + u2v2 = u · v

• Polynomial degree 2:

K(u, v) = (ϕ(u) · ϕ(v)) = (u · v)2

• Polynomial degree d:
K(u, v) = (u · v)d

Gaussian Kernel (Radial Basis Function)
• The Gaussian kernel is defined as:

K(u, v) := e
− ∥u−v∥2

2σ2

• ϕ(u) maps data to an infinite-dimensional feature space.
• The transformed features are never explicitly computed, as the kernel trick is

used to calculate K(u, v) directly.

Perceptron

ŷ = hw(x) = g(
n∑

i=0

wixi) (1)

• A perceptron multiplies each input with its corresponding weight and passes
this value through an activation function g(z) to produce the final output.

• Activation function (sign function): g(z) = 1 if z ≥ 0 otherwise −1.

Perceptron Learning Algorithm
• Initialize ∀iwi

• Loop (until convergence or max steps exceeded)
• For each instance (x(i), y(i)), classify ŷ(i) = hw(x(i))
• Select one misclassified instance (x(j), y(j))
• Update weights: w ← w + γ(y(j) − ŷ(j))x(j) where γ is the learning rate.

Neural Networks

• In neural networks, we can use different activation functions.

Forward Propogation: Matrix Multiplication

• x =

x1

x2

x3

• W [1] =

W
[1]
11 W

[1]
12 W

[1]
13

W
[1]
21 W

[1]
22 W

[1]
23

W
[1]
31 W

[1]
32 W

[1]
33

• W [2] =

W
[2]
11 W

[2]
12

W
[2]
21 W

[2]
22

W
[2]
31 W

[2]
32

• ŷ = g[2](W [2]T g[1](W [1]T x))

• ŷ = g[2](

W
[2]
11 W

[2]
12

W
[2]
21 W

[2]
22

W
[2]
31 W

[2]
32

T

g[1](

W
[1]
11 W

[1]
12 W

[1]
13

W
[1]
21 W

[1]
22 W

[1]
23

W
[1]
31 W

[1]
32 W

[1]
33

T x1

x2

x3

)) = [
ŷ1
ŷ2

]

General Case ŷ = g[L](W [L]T . . . g[2](W [2]T g[1](W [1]T x))) =

ŷ1...
ŷc

Neural Network: Tasks

Task Output Activation Function Range
Regression 1 Linear / No Activation ŷ ∈ R

g(x) = x
Binary Classification 1 Sigmoid ŷ ∈ [0, 1]

g(x) = 1
1+e−x

Multi Class Classification C Softmax ŷ ∈ [0, 1]

g(z) = ezi∑j=1
C

e
zj

ŷi ∈ [0, 1]

ŷc ∈ [0, 1]

Neural Networks vs Other Models
Model Feature Activation Decision Boundary

Mapping
Logistic Regression None Sigmoid Linear, non-robust
Logistic Regression Handcrafted Sigmoid Non-linear, non-robust
Support Vector Handcrafted Sign Non-linear, robust
Machines
Neural Networks Learned Depends Non-linear, non-robust

• Non-robust Decision Boundary: Prone to misclassification since the decision
boundary can be too close to the data points.

• Robust Decision Boundary: Decision boundary is guranteed to be far from
the data points.

Backpropogation
Background: Chain Rule
• Single variable

• Let a = f(x) and z = g(a).
• ∆x→ δA→ ∆z
• δz

δx
= δz

δa
δa
δx

• Multi variable
• Let a = f(x), b = g(z) and z = h(a, b).
• δz

δx
= δz

δa
δa
δx

+ δz
δb

δb
δx

Backpropogation: General Steps
• Assume this neural network uses a non-linear activation g(x) and that g(x) is

differentiable

1. Do forward propogation: Express each neuron as a weighted sum of its
weights and inputs and the activation function.

2. Start by finding δL
δŷ

the rate of change of the loss function w.r.t ŷ
3. Suppose z3 is the weight sum of the neuron in layer 3 before being put into

the activation function. Then find δŷ
δz3

which is the rate of change of ŷ w.r.t z3.
4. From there we can find the rate of change with respect to the weights and the

prior layers.

Convolution Neural Networks
Convolution Layer
• Let image X be a 2D image of width w and height h.
• Let k be the kernel dimension, p be the padding dimension and s be the stride.
• Output Row = ⌊w−k+2p

s
⌋+ 1

• Output Height = ⌊h−k+2p
s
⌋+ 1

• Number of trainable parameters =
(input channels× k × k + 1)× output channels

Pooling Layer
• The pooling layer downsamples feature maps (output from convolution layer).
• The pooling layer steps are similar to the convolution layer steps, except that

aggregation methods are performed on the k × k window instead.
• Aggregation Methods: Max-pool, Average-pool, Sum-pool
• No trainable parameters

Recurrent Neural Networks

Bidirectional RNN
• Used to process data in both the forwards and backwards timestamp.
• It concatenates both the information before xt and the information after xt to

predict the output.

Long Short-Term Memory (LSTM)

Motivation: Maintain relevant context over time, i.e. forget and remember.

• The concatenated vector [ht−1, xt] multiplied by the respective weight matrix
for each signal or input is used to generate the signal or input for one LSTM cell.

RNN Types and Applications

Type Example
One to One Traditional Neural Network
Tx = Ty = 1
One to Many Music Generation
Tx = 1, Ty > 1
Many to One Sentiment Analysis (Classification)
Tx > 1, Ty = 1
Many to Many Name Entity Recognition
Tx = Ty

Many to Many Machine Translation
Tx ̸= Ty Speech Recognition

Attention Score
• Query → qi = W qxi represents the current token we want focus on.
• Key → kj = Wkxj represents the information associated with each input to

be compared with the query. (denoted by k)
• Attention Score → vj = W vxj represents the information that each token

contributes based on the attention score (scalar value).
• All weight matrices W are learned during training.

Self Attention Mechanism

Goal: Measure the relevance/importance of one token xi w.r.t all other tokens in
sequence.
1. Attention Scores Computation: αij = qi · kj , where αij ∈ R.
2. Normalise Scores: Use softmax to convert attention scores to probabilities,

i.e. α′
ij =

exp(αij)∑
j exp(αij)

and
∑

j α
′
ij = 1.

3. Weighted Sum: hi =
∑

j a
′
ijvj .

Note: Each hi can be calculated in parallel.
• The attention score matrix A is a n× n matrix for n inputs.
• hi =

∑
j α

′
ijvj

Transformers
Definition: Deep (layers of encoders and decoders) based on self-attention
mechanism.
• Encoder: Encodes input sequence into a series of representations.
• Decoder: Generates the output sequence.
• Encoder-Decoder Attention: Enable decoder to utilise rich contextual

information provided by encoder.
• Query: Generated based on previous decoder’s block output.
• Key, Value: Generated based on encoder’s output.

Dropout/Early Stopping
Goal: Perform regularisation to prevent overfitting.
• Networks with high capacity can easily overfit to the training data.
• Randomly set a subset of activations in a layer to 0 during forward pass.
• Force network to learn more robust and generalized features by introducing

randomness.
• Early Stopping: Halting training process when JDval

stops improving.

Vanishing/Exploding Gradient
• Vanishing Gradient: Small ∂L

∂wi
→ 0 as it gets repeatedly multiplied during

back-propagation. (Solution: non-saturating g(x), e.g. ReLU).
• Exploding Gradient: Large ∂L

∂wi
→ ex as it gets repeatedly multiplied during

back-propagation. (Solution: gradient clipping, i.e. set range of min,max values
for gradient).

Unsupervised Learning
Clustering → Given a set of m data points {x(1), . . . , x(m)}, identify k ≥ 2

clusters in the data. (x(i) can be high dimensional, i.e. many features)
Centroid → Mean position of all data points x(i) for i = 1, . . . ,m1 within a
cluster j, used as a reference point to determine a given data point’s cluster.

µj =
1

m1

m1∑
i=1

x(i)

K-Means Algorithm

Goal: Find K clusters.
1. Randomly initialize K centroids, µ1, . . . , µK ∈ Rn.
2. Repeat until convergence:

2.1. Cluster Assignment: For i = 1, . . . ,m, c(i) = argmin
j
||x(i) − µj ||2

2.2. Update Centroids: For k = 1, . . . ,K, µk = 1
|ck|

∑
x(i)∈ck

x(i)

K-Means Convergence
• Local Optima: K-Means may be stuck depending on initial assignment of

centroids.
• Distortion/Loss Function: Average distance of each sample to its centroid.

For K clusters and m features:

J(c(1), . . . , c(m), µ1, . . . , µK) =
1

m

m∑
i=1

||x(i) − µc(i) ||
2

• Number of Clusters: Elbow method where distortion as K increases. (Data
may not have an elbow/have multiple elbows)

K-Means Variants
• Pick K initial centroids randomly from the points in the data.
• K-Medoids: Pick the data points that are closest to the centroids, and use

them as the centroids.
• Good for scenarios where low dimensional data points exist in high

dimensional vector space.

Hierarchical Clustering
Motivation: When we cannot decide on a fixed number of clusters.

Agglomerative Clustering (Bottom-Up)
1. Start with each data point as its own cluster.
2. Iteratively merge the closest clusters until all data points belong to a single

cluster. (Find a pair of clusters that is the ”nearest” to merge them together)
Note: High space and time complexity⇒ Impractical for large datasets.

Clustering Combination Methods

Method Description
Centroid Method Combining clusters with minimum distance between the

centroids of the two clusters
Single Linkage Minimum distance between the closest elements in

clusters
D(c1, c2) = minD(x1, x2)

Complete Linkage Maximum distance between elements in clusters
D(c1, c2) = maxD(x1, x2)

Average Linkage Average of the distances of all pairs
D(c1, c2) =

1
|c1|

1
|c2|

∑∑
D(x1, x2)

Dimensionality Reduction
Definition: Find a lower-dimensional representation of the data, i.e. given
x(i) ∈ Rr , find x̃(i) ∈ Rr s.t. r < n.
• Number of samples increases exponentially with the number of features.
• Reduction: Identify ”most important” (variation in data) features. Project data

into lower dimension by removing ”non-important” components.
• Reconstruction: Project data into higher dimension by adding ”non-important”

components.
• Change of Basis: Remove dependence between components back.

Preliminaries: Linear Algebra
• Orthonormal Sets: Let S = {v1,v2, . . . ,vn} ⊆ Rn. Set S is orthonormal if
∀ i, j ∈ |S|:

vi · vj =

{
0 if i ̸= j

1 otherwise

• vi · vi = 1⇒ ||vi|| =
√
vi · vi = 1

• Orthonormal Basis: ∀ u ∈ Rn can be written as a unique linear combination
of v ∈ S.

Compact SVD
Intuition: Decompose matrix X to its most significant patterns using only top k
singular values and corresponding singular vectors.
Fact: All n×m matrices X can be factorised as X = UΣV ⊤.
• Each column vector xi ∈ X, i ∈ 1 . . .m represents each data point.
• Each element in xi (row element) represents each of the m features.
• Left Singular Vectors: U is n×m and has m orthonormal columns.

(Mapping from the original feature space to the principal component space)
• Singular Values: Σ is m×m and is diagonal with σj ≥ 0. Ordered by

importance, i.e. largest to smallest. (Importance of each principal component)
• Right Singular Vectors: V is m×m and has m orthonormal rows and

columns. (Define each principal component)

Reducing Dimensions using SVD
Key Idea: Set all singular values except first r to 0, σj>r = 0.
• Reduction: X ≈ ŨΣ̃Ṽ ⊤ ⇒ Z := Ũ⊤X where Z is r ×m reduced data.
• Reconstruction: X̃ := ŨZ, where X̃ is n×m. It can be shown that X̃ ≈ X

(best approximation) by Ũ⊤Ũ = Ir due to orthonormality of columns in Ũ .
• Encoder-Decoder Structure: r-SVD defines structure for reduction and

reconstruction of high dimensional data.

PCA
Definition: Capture components that maximises the statistical variations of the
data, i.e. directions of basis that has highest variance.
Standard Identities
• V ar(X) = E[(x− x)2]
• Cov(x, y) = E[(x− x)− (y − y)]

Covariance Matrix
Note: In many cases, random variables are not independent in data matrix
X = (x(1), . . . ,x(m))⇒ non-zero off-diagonals in covariance matrix.
1. Compute mean-centered data: x̂(i) = x(i) − x.
2. Let X̂ = (x̂(1), . . . , x̂(m))

3. Compute covariance matrix: Cov(X) = 1
m
X̂X̂⊤

Choosing Number of Components
Goal: Find suitable r s.t. at least p% of variance is retained.
Suppose we were given a data matrix X = (x(1), . . . , x(m))

1. Compute covariance matrix Cov(X) = 1
m
X̂X̂⊤.

2. Compute SVD, i.e. Cov(X) = UΣV ⊤, to obtain U (new basis)
3. Choose minimum r s.t.

∑r
i=1 σ2

i∑m
i=1 σ2

i

≥ p
100

.

4. Reduce to r components to obtain Ũ .

	Artificial Intelligence
	Uninformed Search
	Informed Search
	Heuristics

	Machine Learning
	Performance Measures
	Regression
	Classification

	Decision Trees
	Linear Regression
	Dealing with Features of Different Scales
	Normal Equation

	Logistic Regression
	Logistic Function (Sigmoid)
	Cross-entropy Loss
	Logistic Regression with Gradient Descent
	Multi-class Classification
	Receiver Operator Characteristic (ROC) Curve
	Area Under Curve of ROC
	Linear Regression with Regularization
	Effect of Regularization
	Logistic Regression with Regularization

	Hard-margin Support Vector Machine
	Decision Rule
	Margin
	Objective

	Soft-margin Support Vector Machines
	Decision Rule
	Objective
	Hinge Loss
	Kernel Methods & Kernel Trick
	Polynomial Kernel
	Gaussian Kernel (Radial Basis Function)

	Perceptron
	Perceptron Learning Algorithm

	Neural Networks
	Forward Propogation: Matrix Multiplication
	Neural Network: Tasks

	Neural Networks vs Other Models
	Backpropogation
	Background: Chain Rule
	Backpropogation: General Steps

	Convolution Neural Networks
	Convolution Layer
	Pooling Layer

	Recurrent Neural Networks
	Bidirectional RNN
	Long Short-Term Memory (LSTM)

	RNN Types and Applications
	Attention Score
	Self Attention Mechanism
	Transformers
	Dropout/Early Stopping
	Vanishing/Exploding Gradient

	Unsupervised Learning
	K-Means Algorithm
	K-Means Convergence
	K-Means Variants

	Hierarchical Clustering
	Agglomerative Clustering (Bottom-Up)
	Clustering Combination Methods

	Dimensionality Reduction
	Preliminaries: Linear Algebra
	Compact SVD
	Reducing Dimensions using SVD

	PCA
	Covariance Matrix
	Choosing Number of Components

