
Tutorial 10
CS2106: Introduction to Operating Systems

1

Question 1
Virtual Memory: Working Set Model

2

Question 1(a)

Given the following memory reference string

𝑊(𝑇, ∆)	gives the working set at time 𝑇, with a window size of ∆.

Give the working set for the following:
• 𝑊 9, 3
• 𝑊 11, 3
• 𝑊 9, 4
• 𝑊(11, 4)

3

Time 1 2 3 4 5 6 7 8 9 10 11 12
Page 2 3 2 1 5 2 4 5 3 2 5 2

Note:
Over here, the working set is the active
pages in the interval at time 𝑇 with a
window size of ∆.

Question 1(a)

𝑾 𝟗, 𝟑
• 𝒕 = 𝟗
• ∆	= 𝟑

4

Time 1 2 3 4 5 6 7 8 9 10 11 12
Page 2 3 2 1 5 2 4 5 3 2 5 2

∆	= 𝟑

𝒕 = 𝟗

Question 1(a)

𝑾 𝟗, 𝟑 = {𝟑, 𝟒, 𝟓}
• 𝒕 = 𝟗
• ∆	= 𝟑

5

Time 1 2 3 4 5 6 7 8 9 10 11 12
Page 2 3 2 1 5 2 4 5 3 2 5 2

∆	= 𝟑

𝒕 = 𝟗

Question 1(a)

𝑾 𝟏𝟏, 𝟑
• 𝒕 = 𝟏𝟏
• ∆	= 𝟑

6

Time 1 2 3 4 5 6 7 8 9 10 11 12
Page 2 3 2 1 5 2 4 5 3 2 5 2

∆	= 𝟑

𝒕 = 𝟏𝟏

Question 1(a)

𝑾 𝟏𝟏, 𝟑 = {𝟐, 𝟑, 𝟓}
• 𝒕 = 𝟏𝟏
• ∆	= 𝟑

7

Time 1 2 3 4 5 6 7 8 9 10 11 12
Page 2 3 2 1 5 2 4 5 3 2 5 2

∆	= 𝟑

𝒕 = 𝟏𝟏

Question 1(a)

𝑾 𝟗, 𝟒
• 𝒕 = 𝟗
• ∆	= 𝟒

8

Time 1 2 3 4 5 6 7 8 9 10 11 12
Page 2 3 2 1 5 2 4 5 3 2 5 2

∆	= 𝟒

𝒕 = 𝟗

Question 1(a)

𝑾 𝟗, 𝟒 = {𝟐, 𝟑, 𝟒, 𝟓}
• 𝒕 = 𝟗
• ∆	= 𝟒

9

Time 1 2 3 4 5 6 7 8 9 10 11 12
Page 2 3 2 1 5 2 4 5 3 2 5 2

∆	= 𝟒

𝒕 = 𝟗

Question 1(a)

𝑾 𝟏𝟏, 𝟒
• 𝒕 = 𝟏𝟏
• ∆	= 𝟒

10

Time 1 2 3 4 5 6 7 8 9 10 11 12
Page 2 3 2 1 5 2 4 5 3 2 5 2

∆	= 𝟒

𝒕 = 𝟏𝟏

Question 1(a)

𝑾 𝟏𝟏, 𝟒 = {𝟐, 𝟑, 𝟓}
• 𝒕 = 𝟏𝟏
• ∆	= 𝟒

11

Time 1 2 3 4 5 6 7 8 9 10 11 12
Page 2 3 2 1 5 2 4 5 3 2 5 2

∆	= 𝟒

𝒕 = 𝟏𝟏

Question 1(a)

Given the following memory reference string

𝑊(𝑇, ∆)	gives the working set at time 𝑇, with a window size of ∆.

Give the working set for the following:
• 𝑊 9, 3 = {3, 4, 5}
• 𝑊 11, 3 = {2, 3, 5}
• 𝑊 9, 4 = {2, 3, 4, 5}
• 𝑊 11, 4 = {2, 3, 5}

12

Time 1 2 3 4 5 6 7 8 9 10 11 12
Page 2 3 2 1 5 2 4 5 3 2 5 2

Question 1(b)

Suppose we know the 𝑊(𝑇, ∆) value for all processes, how can OS use this
information?
• 𝑊(𝑇, ∆) gives the number of frames required by a process as well as

pages in the working set given time 𝑇 and window size ∆
• The OS can utilize this value when a process becomes active (e.g.

blocked → running) to load all working set pages into frames for that
process.
• Similarly, when the process become inactive (e.g. from running →

blocked), the OS can migrate those pages from physical frame into
secondary storage.

13

Hint: In demand paging, the OS only loads a page into RAM upon
a page fault. In a new locality, there will be many page faults, is
there a way, now that we know the working set for all processes
to reduce the number of page faults?

Question 1(b)

Suppose we know the 𝑊(𝑇, ∆) value for all processes, how can OS use this
information?
• The OS can also calculate the number of pages required from the working

sets of all “active” processes.
• If the total number exceeds the physical frame number, the OS can stop

allowing more processes to become runnable or else it would induce
thrashing.

14

Hint: In demand paging, the OS only loads a page into RAM upon
a page fault. In a new locality, there will be many page faults, is
there a way, now that we know the working set for all processes
to reduce the number of page faults?

Question 1(b): Extension

Using the same idea, is there any easy way to dynamically adjust the Δ
value?

15

CPU Utilization Page Fault Activity Interpretation

High Low Δ value is well chosen

Low High Δ value may be too small

Low Low Δ value may be too big

Question 1(b): Extension

Using the same idea, is there any easy way to dynamically adjust the Δ
value?
• High CPU Utilization, Low Page Fault Activity → Δ value is well chosen

• The pages resident in memory consist of pages that are actively being used by all
processes.

• Low CPU Utilization, High Page Fault Activity → Δ may be too small
• Some pages that are part of the current locality may not be resident in memory,

results in high page fault activity which is I/O bound, so CPU would idle.
• Low CPU Utilization, Low Page Fault Activity → Δ may be too large

• Working set now includes pages that are not activity used by each process
• Total demand for frames exceed actual physical memory
• Fewer processes can fit in physical memory at the same time.
• Not enough runnable processes to keep CPU busy.

16

Question 1(c)

Consider the following "mysterious" algorithm:

17

1. Every Page Table Entry has an additional K-bit mysterious value, M0, M1, … MK-1.
All K-bit are initialized to '0'.

2. Whenever a page P is referenced, its corresponding Mysterious values are
updated as follows:
a. MK-1 ß MK-2
b. …
c. M2 ß M1
d. M1 ß M0
e. M0 ß 1

3. All other Non-P pages' Mysterious values are updated as follows:
a. MK-1 ß MK-2
b. …
c. M2 ß M1
d. M1 ß M0
e. M0 ß 0

Question 1(c)

18

Page Frame 3 Bits

1 6 000

2 3 000

3 3 001

4 1 000

Page Frame 3 Bits

1 6 001

2 3 000

3 3 010

4 1 000

Page Frame 3 Bits

1 6 010

2 3 001

3 3 100

4 1 000

T = 1, Access Page #3

T = 2, Access Page #1 T = 3, Access Page #2

Page Frame 3 Bits

1 6 000

2 3 000

3 3 000

4 1 000

T = 0

Mysterious Algorithm Visualized

Entries with non-zero bits, were pages that were recently accessed.

Question 1(c)

What does the mysterious value represent?
The mysterious value indicates whether a page has been used in K memory
accesses windows.

If the above algorithm is handled by the hardware, what should be done
every K memory accesses?
Every K-accesses, the hardware should trigger an interrupt to bring in the
OS so that the OS can take note of the working set 𝑊() (essentially all
pages with non-zero K-bit).

19

Question 2
File Systems: Buffered File Operation

20

Q2: Context

• File operations are expensive in terms of time
• Each file operation is a system call, need to change from user to kernel

mode.
• High latency access time to secondary storage

• This results in a strange phenomenon
• The time taken to perform 100 file operations for 1 item far exceeds

the amount of time needed to perform a single file operation for 100
items

21

Q2: Context

• This motivates the implementation of buffered file operations
which can be implemented with primitive file operations.
• The buffered version essentially maintains an internal

intermediate storage in memory (i.e. buffer) to store user
read/write values from/to the file.
• For example, a buffered write operation will wait until the

internal memory buffer is full before doing a large one-time file
write operation to flush the buffer content into file.

22

Question 2(a)

• Give one or two examples of buffered file operations found in your
favourite programming language(s).
• C: printf, scanf, fprintf, fscanf
• Java: FileInputStream, FileOutputStream

• Other than the "chunky" read/write benefit, are there any other additional
features provided by those high-level buffered file operations?
• Error checking
• Packing / unpacking of data types.

23

Question 2(b)

Take a look at the given "weird.c" source code. Compile and perform the
following experiments: Change the trigger value from 100, 200, ... Until you
see values printed on screen before the program crashes.
i. Can you explain both the behaviour and the significance of the "trigger"

value?
ii. If you add a new line character "\n" to the printf() statement, how

does the output pattern changes?
iii. How can this information be useful?

24

Question 2(b)

i. Can you explain both the behaviour and the significance of the "trigger"
value?
• printf buffers the user output until the internal buffer is full before

actually sending the output to the screen.
• The trigger indicates the probable size of the internal buffer.

25

Question 2(b)

ii. If you add a new line character "\n" to the printf() statement, how does
the output pattern changes?
• If a newline character is added, the output is performed immediately.

iii. How can this information be useful?
• If printf() or similar is used as a debugging mechanism, the buffered

output sequence may confuse the coder. e.g. in the original "weird.c",
the program can crash without showing any printout, which can easily
lead to the wrong conclusion ("the while loop is not executed!").
• An interesting way to solve the above issue is to use fprintf and

"stderr" (the standard error). Use it and see what happens with the
buffering.

26

Question 2(c)

• Give a high-level pseudo code to provide buffered file read operation.
• Use the following "function header" as a starting point:

• Suppose, there is already an internal buffer called Buffer with the
following attributes
• size: capacity of the buffer
• availableItems: how much data is current stored in the buffer

27

BufferedFileRead(File, outputArray, arraySize)
// Read "arraySize" bytes from "File" and place the file content in
// "outputArray"

Read Operation: read()
n Function Call
 int read(int fd, void *buf, int n)
n Purpose

q reads up to n bytes from current offset into buffer buf
n Return

q number of bytes read, can be 0...n
q <n – end of file is reached

n Parameters
q fd – file descriptor (must be opened for read)
q buf – an array large enough to store n bytes

n read() is sequential read
q starts at current offset and increments offset by bytes read

[CS2106 L10 - AY2425S2] 28

Question 2(c): BufferedFileRead

29

Secondary
Storage

Buffer (in Memory)

Read 10 bytes from File F

Question 2(c): BufferedFileRead

30

Secondary
Storage

0 1 1 0 1 0 0 1

Buffer (in Memory)

Read 10 bytes from File F

Only serve data to user
when buffer is full!

Question 2(c): BufferedFileRead

31

Secondary
Storage

Buffer (in Memory)

Read 10 bytes from File F

01101001

Only serve data to user
when buffer is full!

User

Question 2(c): BufferedFileRead

32

Secondary
Storage

1 1

Buffer (in Memory)

Read 10 bytes from File F

01101001

User

Question 2(c)

• Give a high-level pseudo code to provide buffered file read operation.
• Suppose, there is already an internal buffer called Buffer with the

following attributes size and availableItems

33

BufferedFileRead(File, outputArray, arraySize)
// Read "arraySize" items from "File" and place in the "outputArray"

If Buffer.availableItems < arraySize
 read(File, Buffer, Buffer.size – Buffer.availableItems)
 Buffer.availableItems = Buffer.size

copy(outputArr, Buffer, arraySize)
Buffer.available -= arraySize

size: capacity of the buffer
availableItems: how much data is current stored in the buffer

Question 3
File Systems: Open File Table

34

Question 3

Consider two Processes A and B, as well as the following System-Wide
Open File Table, with two files File1.abc and File2.def.

35

Question 3

Discuss how this organization helps OS to handle the following scenarios.
Your answer should refer to the relevant structure(s) if possible.
a) Process A tries to open a file that is currently being written by Process B.
b) Process A tries to use a bogus file descriptor in a file-related system call.
c) Process A can never "accidentally" access files opened by Process B.
d) Process A and Process B read from the same file. However, their reading

should not affect each other.
e) Redirect Process A's standard input / output.

Example: " a.out < test.in > test.out".

36

Question 3(a)

Process A tries to open a file that is currently being written by Process B.
• OS uses the Open File Table to check for existing opened file.
• Since the file is already opened by Process B for writing, it can reject the

file open system call from process A.

37

Note: The answer here is a suggested solution to ensure there is no file corruption.
by preventing process A from writing to a file that process B is currently writing on.

Question 3(a)

38

…

0

…

x

……

y

Open File Table

……

Proc A PCB

0
1

……

fd

File Descriptor
Table

Op.Type: …
File offset: …
"File Data":

Proc B PCB

File Descriptor
Table

0
1

……

fd

File1.abc

File2.def

"Actual File"

Op.Type: Write
File offset: 1024
"File Data":

Process A tries to open a file that is
currently being written by Process B.

1. OS uses the Open File Table to
check for existing opened file.

2. Since the file is already opened by
Process B for writing, it can reject
the file open system call from
process A.

Question 3(b)

Process A tries to use a bogus file descriptor in a file-related system call.
• Since Process A passed the file descriptor (fd for short) to OS as

parameter, OS can check whether that particular entry is valid (or even
exists) in the PCB of A.
• If the fd is out of range, non-existent etc, OS can reject the file-related

system calls made by Process A.

39

Question 3(b)

40

…

0

…

x

……

y

Open File Table

……

Proc A PCB

0
1

……

fd

File Descriptor
Table

Op.Type: …
File offset: …
"File Data":

Proc B PCB

File Descriptor
Table

0
1

……

fd

File1.abc

File2.def

"Actual File"

Op.Type: Read
File offset: 1234
"File Data":

Op.Type: Write
File offset: 5678
"File Data":

Process A tries to use a bogus file
descriptor in a file-related system call.

• A file descriptor is a non-negative
integer that a process uses to refer
to an open file.

• So, if Process A tries to use a bogus
file descriptor (i.e. a non valid
integer) that does not exist within
Process A’s file descriptor table,
then the OS will reject the file related
system call made by Process A.

Question 3(c)

Process A can never "accidentally" access files opened by Process B.
• Since the fd index is in process specific PCB, there is no way Process A

can access Process B's file descriptor table.

41

Question 3(c)

42

…

0

…

x

……

y

Open File Table

……

Proc A PCB

0
1

……

fd

File Descriptor
Table

Op.Type: …
File offset: …
"File Data":

Proc B PCB

File Descriptor
Table

0
1

……

fd

File1.abc

File2.def

"Actual File"

Op.Type: Read
File offset: 1234
"File Data":

Op.Type: Write
File offset: 5678
"File Data":

Process A can never "accidentally"
access files opened by Process B.
• A file descriptor is a non-negative

integer that a process uses to refer
to an open file.

• Each process has its own file
descriptor table.

• For example, file descriptor index 3
in process A and process B can
point to different entries in the Open
File Table.

• Process A cannot access Process
B’s file descriptors.

Question 3(d)

Process A and Process B read from the same file. However, their reading
should not affect each other.
• As discussed in lecture, Process A and Process B can have their own fds,

which refers to two distinct locations in the open file table.
• Each entry of the open file table keep track of the current location

separately. This enables Process A and Process B to read from the same
file independently.

43

Question 3(d)

44

…

0

…

x

……

y

Open File Table

……

Proc A PCB

0
1

……

fd

File Descriptor
Table

Op.Type: …
File offset: …
"File Data":

Proc B PCB

File Descriptor
Table

0
1

……

fd

File1.abc

"Actual File"

Op.Type: Read
File offset: 1234
"File Data":

Op.Type: Read
File offset: 5678
"File Data":

Process A and Process B read from the
same file. However, their reading
should not affect each other.

• The same fd number in Process A
and Process B can refers to two
distinct locations in the open file
table.

• Each entry of the open file table
keeps track of the current location
separately. This enables Process A
and Process B to read from the
same file independently.

Question 3(e)

Redirect Process A's standard input / output.
• Example: "a.out < test.in > test.out".

• There are 3 standard file descriptors for every program in Unix (0 = stdin,
1 = stdout, 2 = stderr).
• These are "opened" automatically and linked to the corresponding files.

• Note that screen (terminal), keyboard are represented as special files in Unix.

• So, for all file redirections, it is a simple question of:
• Opening and possibly creating the file
• Replace the corresponding file descriptor to point to the entry from (1) in the open

file table.

45

Question 3(e)

46

…

0

…

x

……

y

Open File Table

……

Proc A PCB

0
1

……

fd

File Descriptor
Table

Op.Type: …
File offset: …
"File Data":

test.in

test.out

"Actual File"

Op.Type: Read
File offset: 0
"File Data":

Op.Type: Write
File offset: 0
"File Data":

Redirect Process A's standard input /
output.
Example: "a.out < test.in >
test.out".
• For the above example, we are

reading from “test.in” into a program
called “a.out”.

• The output from “a.out” is redirected
by writing into a new file called
“test.out”.

Question 4
File Systems: Directory Permission

47

Context

In *nix system, a directory has the same set of permission settings as a file.
For example:

48

You can see that directory Directory has the read, write, execute
permission for owner, but only execution permission for group and others.

Permission Bits for file and
directories in *NIX are in the form of

Owner Group Others
RWX RWX RWX

• It is easy to understand the permission bits for a regular file (read = can only
access, write = can modify, execute = can execute this file).

• However, the same cannot be said for the directory permission bits.

Question 4

49

NormDir ReadExeDir WriteExeDir ExeOnlyDir
a ok ok nope nope
b ok ok ok ok
c ok ok nope nope
d ok ok ok ok
e ok ok ok ok
f ok nope ok nope

a) Perform "ls –l DDDD".
b) Change into the directory using "cd DDDD".
c) Perform "ls –l".
d) Perform "cat file.txt" to read the file content.
e) Perform "touch file.txt" to modify the file timestamp.
f) Perform "touch newfile.txt" to create a new file.

50

END OF TUTORIAL

