
Tutorial 8
CS2106: Introduction to Operating Systems
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Disjoint Memory Management

• Last Week: Contiguous Memory Management
• Memory is allocated to a process in a single, continuous block.

• Fixed Partitioning

• Dynamic Partitioning 

• Partition Info

• This Week: Disjoint Memory Management
• Now processes do not occupy a contiguous memory region. 

• Paging Scheme

• Segmentation Scheme

• Segmentation with Paging
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Paging Scheme

• Logical Addresses are how a process 
view its memory space.

• The physical memory is split into 
regions of fixed size.

• Known as the physical frame.

• The logical memory of a process is 
split into regions of the same size.

• Known as the logical page.
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Paging Scheme

• To a process, its logical memory 
space appears contiguous

• Logical Memory Address appears 
continuous to a process

• But actually, its occupied physical 
memory can be disjoined.

• Physical Memory Location may not be 
always at continuous memory 
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Segmentation Scheme

• Separate the regions in the 
memory space of a process into 
multiple segments.

• Each segment is mapped to 
contiguous physical memory 
region.
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Segmentation with Paging
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Question 1
Paging/Segmentation/Hybrid Schemes
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Question 1

• Let us use a tiny example to understand the various disjoint 
memory schemes. 

• For simplicity, we assume there are only two types of memory 
usage in a program: 

• text (instruction) and

• data (global variables).
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Question 1

The following questions assume that program P has:

• 6 instructions, each fitting in a processor word 
• (instruction words #1 to #6)

• 5 data words 
• (data words #1 to #5)
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Q1: Paging

• Given the following parameters
• Page Size = Frame Size = 4 words

• Largest logical memory size = 16 words

• Number of physical memory frames = 16

• Assuming that P’s data region is placed right after the 
instruction region in the logical memory space, fill in the 
following page table. 

• Use frames 5, 2, 10, 9 for pages 0, 1, 2, 3 respectively (note: 
you may not need all frames). 

• Indicate the value of the valid bit for all page table entries
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Q1: Paging
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Logical Memory Space

Page # Frame # Valid

0 5 T

1 2 T

2 10 T

3 -- F

Processor Action Page Number

Fetch 1st Instruction 0

Load the 2nd Data Word 1

Load the 3rd Data Word 2

Load the 6th Data word

(This is intentionally

outside of the range)

None

Frame 9 is not in the 

page table because 

the program P does 

not use Page 3



Q1: Paging

Find out the logical address and the corresponding physical 
address for the following actions taken by the processor.
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Processor Action Logical Address Physical Address

Fetch 1st Instruction 0 5 × 4 + 0 = 20

Load the 2nd Data Word 7 2 × 4 + 3 = 13

Load the 3rd Data Word 8 10 × 4 + 0 = 40

Load the 6th Data word

(This is intentionally

outside of the range)

11 10 × 4 + 3 = 43

Page # Frame # Valid

0 5 T

1 2 T

2 10 T

3 -- F

Processor Action Page

Fetch 1st Instruction 0

Load the 2nd Data Word 1

Load the 3rd Data Word 2

Load the 6th Data word None

• Note 1: Observe that the consecutive logical addresses may not 

be consecutive in physical memory (e.g. 2nd and 3rd Data word).

• Note 2: Incorrect memory access is not catchable if it is still within 

valid page boundary.



Q1: Segmentation

• Assuming text and data are stored in segments 0 and 1 
respectively, fill in the following segment table. 

• Use addresses 50 and 23 as the starting addresses for the two 
segments, respectively.
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Segment # Base Address Limit

0 50 6

1 23 5



Q1: Segmentation

Similar to (a), find out the logical address and physical address 
for the following processor actions:
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Segment # Base Address Limit

0 50 6

1 23 5

Processor Action Logical Address Physical Address

Fetch 1st Instruction <0, 0> 50 + 0 = 50

Load the 2nd Data Word <1, 1> 23 + 1 = 24

Load the 3rd Data Word <1, 2> 23 + 2 = 25

Load the 6th Data word

(This is intentionally

outside of the range)

<1, 5> Triggers memory

addressing error



Q1: Segmentation with Paging

• Assuming the following parameters:
• Page Size = Frame Size = 4 words

• Number of physical memory frames = 16

• Maximum size of each segment = 4 pages

• Furthermore, assume the 
• pages from the code segment are allocated to frames 7, 4, 1 and 2 

• pages from the data segment allocated to frames 9, 3, 14 and 6 

• (note that you may not need all of them).
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Q1: Segmentation with Paging

• Draw the segment and page tables for this setup, then fill in the 
processor action table. 

• For the logical addresses, use the notation of 
• <segment id, page number, offset>.
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Q1: Segmentation with Paging
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Q1: Segmentation with Paging

• Draw the segment and page tables for this setup, then fill in the 
processor action table. 

• For the logical addresses, use the notation of 
• <segment id, page number, offset>.
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Processor Action Logical Address Physical Address

Fetch 1st Instruction <0, 0, 0> 7 × 4 + 0 = 28

Load the 2nd Data Word <1, 0, 1> 9 × 4 + 1 = 37

Load the 3rd Data Word <1, 0, 2> 9 × 4 + 2 = 38

Load the 6th Data word

(This is intentionally

outside of the range)

<1, 1, 1> 3 × 4 + 1 = 13



Question 2
Dynamic Allocation
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Question 2: Dynamic Allocation

• It is possible for a program to dynamically allocate (i.e., enlarge 
the memory usage) during runtime. 

• For example, the system call malloc() in C or new in Java/C++ 
can enlarge the heap region of process memory.

• Discuss the OS mechanisms needed to support dynamic 
allocation in the following schemes:

a) Contiguous memory allocation
• Fixed and dynamic size partitioning

b) Pure Paging

c) Pure Segmentation
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Q2: Contiguous Memory Allocation

• For simplicity, we have the heap region to be 
allocated at the end of the logical memory space. 

• Then, we can enlarge the heap region by 
enlarging the partition allocated to the process.
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Q2: Contiguous Memory Allocation

• Fixed Partitioning
• No extra work is needed, as heap region can simply 

use up the free space (the internal fragmentation) 
between the partition size and the actual memory 
size
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Q2: Contiguous Memory Allocation

• Dynamic partitioning:
• If the adjacent partition is free: 

• Simply modify the partition information

• i.e. change the length of current partition and shorten 
the free partition.
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Q2: Contiguous Memory Allocation

• Dynamic partitioning:
• If adjacent partitions are occupied: 

• The current partition cannot be enlarged. 

• Relocation is required. 

• OS need to look for a large enough free partition to fit the 
enlarged partition. 

• Once located, the current partition is moved over.
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Q2: Pure Paging

• Due to internal fragmentation of the paging scheme, it is 
possible that the allocation can use the remaining free space in 
the page. 

• Suppose the allocation overshoot the page boundary, then OS 
needs to look for a free physical frame f. 

• Afterward, update the page table by changing the first invalid 
page table entry from invalid to valid and fill in frame number f
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Q2: Pure Paging
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Q2: Pure Paging
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Q2: Pure Segmentation

• Idea is similar to the dynamic partitioning. 

• If there is free memory at the end of the heap segment, then OS 
can simply update the limit of the segment and reduce the size 
of the affected free partition. 

• If there is no free memory, then relocation is required. After 
relocation, both base and limit of the heap segment needs to be 
updated.
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Q2: Pure Segmentation
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Question 3
Paging and TLB

31



Question 3: Paging and TLB

Suppose the system uses the paging scheme with the page 
tables entirely stored in physical memory (DRAM). The page size 
is 4KB, and the logical addresses are 32-bit long.
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If accessing DRAM takes 50ns (nanoseconds), what is the 
latency of accessing a global variable of type char?

Question 3(a)
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If accessing DRAM takes 50ns (nanoseconds), what is the 
latency of accessing a global variable of type char?

• To access the global variable of type char, 
• The process needs to access it’s page table in memory to get the page 

to frame mapping. 

• Then it can access the actual item in physical memory

• 50ns (access page table) + 50ns (access actual item) = 100ns

Question 3(a)
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Question 3(b)

Assuming the system uses a TLB and 75% of all page-table 
references hit in the TLB. What is the average memory access 
time? You can assume that looking up a page table entry in TLB 
takes negligible time.
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Question 3(b)
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Question 3(b)

Assuming the system uses a TLB and 75% of all page-table 
references hit in the TLB. What is the average memory access 
time? You can assume that looking up a page table entry in TLB 
takes negligible time.

• TLB Hit: 50ns (Access TLB, Physical Memory)

• TLB Miss: 100ns (Access TLB, Page Table, Physical Memory)

• 0.75 * 50ns + (1-0.75)*100ns = 62.5ns
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Question 3(c)

How many entries does a TLB need to have to achieve a hit ratio 
of 75%? Assume the program generates logical memory 
addresses uniformly at random. 
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Question 3(c)
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Question 3(c)

How many entries does a TLB need to have to achieve a hit ratio 
of 75%? Assume the program generates logical memory 
addresses uniformly at random. 

• Page Size = 4KB = 212 Bytes

• Total number of page table entries = 2(32-12) = 220 = 1M entries

• If we assume the memory access are uniformly distributed 
between all the possible pages, then we need at least 1M*0.75 
= 786,432 entries in the TLB. 
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Question 3(c)

• Do you think a TLB in an actual machine is this large? 
• It seems impossible to have a TLB this large to guarantee a high hit-rate. 

• If not, then how is it possible to achieve a high TLB-hit rate?
• Despite TLB being quite small (32 to 1024 entries) in real-world machines, 

TLB hit ratio is still very high (commonly 99% hit rate) in actual usage.

• This is because memory access is not uniformly distributed.

• This can be understood with the aid of locality principle:

• Temporal Locality: Memory address which is used is likely to be used again

• Spatial Locality: Memory addresses close to a used address is likely to be used

• it is more likely to have repeated memory accesses to same (temporal locality) or 
different (spatial locality) parts of the same memory page in a time interval rather than 
uniformly spread accesses.
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Question 3(c)
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Question 4
Fragmentation in Buddy Allocator
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Question 4

i. Calculate the average amount of memory capacity lost to internal 
fragmentation in a system that uses the Buddy allocator. 

ii. Can the Buddy allocator suffer from external fragmentation?
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Question 4

Calculate the average amount of memory capacity lost to internal 
fragmentation in a system that uses the Buddy allocator. 

• For an allocation request of N bytes: 
• min fragmentation = 0% (exact fit, N=2𝑘), 

• max fragmentation = ~50% (N=2𝑘−1 + 1), 

• on average 25%. 

• Note that internal fragmentation > 50% is not possible.
• Would have been allocated a smaller free block of (N=2𝑘−1)
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Question 4

Can the Buddy allocator suffer from external fragmentation?

External fragmentation can still happen!
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Suppose we want to allocate Process F, that is 200KB, we are 
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