
Tutorial 8
CS2106: Introduction to Operating Systems

1



Disjoint Memory Management

• Last Week: Contiguous Memory Management
• Memory is allocated to a process in a single, continuous block.

• Fixed Partitioning

• Dynamic Partitioning 

• Partition Info

• This Week: Disjoint Memory Management
• Now processes do not occupy a contiguous memory region. 

• Paging Scheme

• Segmentation Scheme

• Segmentation with Paging

2



Paging Scheme

• Logical Addresses are how a process 
view its memory space.

• The physical memory is split into 
regions of fixed size.

• Known as the physical frame.

• The logical memory of a process is 
split into regions of the same size.

• Known as the logical page.

3

Page 3

Page 2

Page 1

Page 0

logical 

memory

physical 

memory

frame 7

6

5

4

3

2

1

frame 0

Page 3

Page 0

Page 2

Page 1

Process POV Actual Physical Memory



Paging Scheme

• To a process, its logical memory 
space appears contiguous

• Logical Memory Address appears 
continuous to a process

• But actually, its occupied physical 
memory can be disjoined.

• Physical Memory Location may not be 
always at continuous memory 

4

Page 3

Page 2

Page 1

Page 0

logical 

memory

physical 

memory

frame 7

6

5

4

3

2

1

frame 0

Page 3

Page 0

Page 2

Page 1

Process POV Actual Physical Memory



Segmentation Scheme

• Separate the regions in the 
memory space of a process into 
multiple segments.

• Each segment is mapped to 
contiguous physical memory 
region.

5

Physical Memory

User 

Code 

Segment

Stack 

Segment

Heap 

Segment

Global 

Data 

Segment

0

1300

2400

3500

5700

6000

7500

0

1

2

3

3500

6000

2400

0

segment table

2200

1500

1100

1300

LimitBase

Memory Access 

< Segment Id, Offset >

< 2, 500 >

Offset < Limit 

for valid access



Segmentation with Paging

6

Page Table

CPU

Frame 

Number

S P D

<

F D

Yes

No

Addressing 

Error!

S

P

Physical 

Memory

Page 

limit

Pg Table 

Base

Segment Table

Each segment has a page table



Process P

Page 2

Page 1

Page 0

Text(0)

Page 1

Page 0

Data(1)

Page 0

Stack(2)

Page 0

Heap(3)

0 3

1 2

2 1

3 1

...

...

...

...

7

6

5

4

3

2

1

frame 0

frame 15

14

13

12

11

10

9

8

0 7

1 2

2 14

0 9

1 13

0 12

0 6

< 1, 6 >

4-byte Page
7



Question 1
Paging/Segmentation/Hybrid Schemes

8



Question 1

• Let us use a tiny example to understand the various disjoint 
memory schemes. 

• For simplicity, we assume there are only two types of memory 
usage in a program: 

• text (instruction) and

• data (global variables).

9



Question 1

The following questions assume that program P has:

• 6 instructions, each fitting in a processor word 
• (instruction words #1 to #6)

• 5 data words 
• (data words #1 to #5)

10



Q1: Paging

• Given the following parameters
• Page Size = Frame Size = 4 words

• Largest logical memory size = 16 words

• Number of physical memory frames = 16

• Assuming that P’s data region is placed right after the 
instruction region in the logical memory space, fill in the 
following page table. 

• Use frames 5, 2, 10, 9 for pages 0, 1, 2, 3 respectively (note: 
you may not need all frames). 

• Indicate the value of the valid bit for all page table entries

11



Q1: Paging

Page 0

0

1

2

3

1st Instruction

2nd Instruction

3rd Instruction

4th Instruction

Page 1

4

5

6

7

5th Instruction

6th Instruction

1st Data Word

2nd Data Word

Page 2

8

9

10

11

3rd Data Word

4th Data Word

5th Data Word

<empty>

Page 3

12

13

14

15

<empty>

<empty>

<empty>

<empty>

12

Logical Memory Space

Page # Frame # Valid

0 5 T

1 2 T

2 10 T

3 -- F

Processor Action Page Number

Fetch 1st Instruction 0

Load the 2nd Data Word 1

Load the 3rd Data Word 2

Load the 6th Data word

(This is intentionally

outside of the range)

None

Frame 9 is not in the 

page table because 

the program P does 

not use Page 3



Q1: Paging

Find out the logical address and the corresponding physical 
address for the following actions taken by the processor.

13

Processor Action Logical Address Physical Address

Fetch 1st Instruction 0 5 × 4 + 0 = 20

Load the 2nd Data Word 7 2 × 4 + 3 = 13

Load the 3rd Data Word 8 10 × 4 + 0 = 40

Load the 6th Data word

(This is intentionally

outside of the range)

11 10 × 4 + 3 = 43

Page # Frame # Valid

0 5 T

1 2 T

2 10 T

3 -- F

Processor Action Page

Fetch 1st Instruction 0

Load the 2nd Data Word 1

Load the 3rd Data Word 2

Load the 6th Data word None

• Note 1: Observe that the consecutive logical addresses may not 

be consecutive in physical memory (e.g. 2nd and 3rd Data word).

• Note 2: Incorrect memory access is not catchable if it is still within 

valid page boundary.



Q1: Segmentation

• Assuming text and data are stored in segments 0 and 1 
respectively, fill in the following segment table. 

• Use addresses 50 and 23 as the starting addresses for the two 
segments, respectively.

14

Segment # Base Address Limit

0 50 6

1 23 5



Q1: Segmentation

Similar to (a), find out the logical address and physical address 
for the following processor actions:

15

Segment # Base Address Limit

0 50 6

1 23 5

Processor Action Logical Address Physical Address

Fetch 1st Instruction <0, 0> 50 + 0 = 50

Load the 2nd Data Word <1, 1> 23 + 1 = 24

Load the 3rd Data Word <1, 2> 23 + 2 = 25

Load the 6th Data word

(This is intentionally

outside of the range)

<1, 5> Triggers memory

addressing error



Q1: Segmentation with Paging

• Assuming the following parameters:
• Page Size = Frame Size = 4 words

• Number of physical memory frames = 16

• Maximum size of each segment = 4 pages

• Furthermore, assume the 
• pages from the code segment are allocated to frames 7, 4, 1 and 2 

• pages from the data segment allocated to frames 9, 3, 14 and 6 

• (note that you may not need all of them).

16



Q1: Segmentation with Paging

• Draw the segment and page tables for this setup, then fill in the 
processor action table. 

• For the logical addresses, use the notation of 
• <segment id, page number, offset>.

17



Q1: Segmentation with Paging

18

Page 0

0

1

2

3

1st Instruction

2nd Instruction

3rd Instruction

4th Instruction

Page 1

4

5

6

7

5th Instruction

6th Instruction

<empty>

<empty>

Page 0

8

9

10

11

1st Data Word

2nd Data Word

3rd Data Word

4th Data Word

Page 1

12

13

14

15

5th Data Word

<empty>

<empty>

<empty>

Logical Memory Space Segment # Page Limit Page Table Base

0 2

1 2

Page # Frame # Valid

0 7 T

1 4 T

2 -- F

3 -- F

Page # Frame # Valid

0 9 T

1 3 T

2 -- F

3 -- F



Q1: Segmentation with Paging

• Draw the segment and page tables for this setup, then fill in the 
processor action table. 

• For the logical addresses, use the notation of 
• <segment id, page number, offset>.

19

Processor Action Logical Address Physical Address

Fetch 1st Instruction <0, 0, 0> 7 × 4 + 0 = 28

Load the 2nd Data Word <1, 0, 1> 9 × 4 + 1 = 37

Load the 3rd Data Word <1, 0, 2> 9 × 4 + 2 = 38

Load the 6th Data word

(This is intentionally

outside of the range)

<1, 1, 1> 3 × 4 + 1 = 13



Question 2
Dynamic Allocation

20



Question 2: Dynamic Allocation

• It is possible for a program to dynamically allocate (i.e., enlarge 
the memory usage) during runtime. 

• For example, the system call malloc() in C or new in Java/C++ 
can enlarge the heap region of process memory.

• Discuss the OS mechanisms needed to support dynamic 
allocation in the following schemes:

a) Contiguous memory allocation
• Fixed and dynamic size partitioning

b) Pure Paging

c) Pure Segmentation

21



Q2: Contiguous Memory Allocation

• For simplicity, we have the heap region to be 
allocated at the end of the logical memory space. 

• Then, we can enlarge the heap region by 
enlarging the partition allocated to the process.

22

Heap



Q2: Contiguous Memory Allocation

• Fixed Partitioning
• No extra work is needed, as heap region can simply 

use up the free space (the internal fragmentation) 
between the partition size and the actual memory 
size

23

Physical 

Memory

Heap



Q2: Contiguous Memory Allocation

• Dynamic partitioning:
• If the adjacent partition is free: 

• Simply modify the partition information

• i.e. change the length of current partition and shorten 
the free partition.

24

Physical 

Memory

Heap



Q2: Contiguous Memory Allocation

• Dynamic partitioning:
• If adjacent partitions are occupied: 

• The current partition cannot be enlarged. 

• Relocation is required. 

• OS need to look for a large enough free partition to fit the 
enlarged partition. 

• Once located, the current partition is moved over.

25

Physical 

Memory

Heap



Q2: Pure Paging

• Due to internal fragmentation of the paging scheme, it is 
possible that the allocation can use the remaining free space in 
the page. 

• Suppose the allocation overshoot the page boundary, then OS 
needs to look for a free physical frame f. 

• Afterward, update the page table by changing the first invalid 
page table entry from invalid to valid and fill in frame number f

26



Q2: Pure Paging

27

L0

L1

L2

L3

Heap Heap

F

0

F

1

F

2

F

3

F

4

F

5

F

6

F

7

F

8

F

9

F

1

0

F

1

1

F

1

2

F

1

3

F

1

4

F

1

5

L# F#

0

1

2

3



Q2: Pure Paging

28

F

0

F

1

F

2

F

3

F

4

F

5

F

6

F

7

F

8

F

9

F

1

0

F

1

1

F

1

2

F

1

3

F

1

4

F

1

5

L# F#

0

1

2

3

L0

L1

L2

L3

Heap

Heap



Q2: Pure Segmentation

• Idea is similar to the dynamic partitioning. 

• If there is free memory at the end of the heap segment, then OS 
can simply update the limit of the segment and reduce the size 
of the affected free partition. 

• If there is no free memory, then relocation is required. After 
relocation, both base and limit of the heap segment needs to be 
updated.

29



Q2: Pure Segmentation

30

0

1

2

3

4

5

6

…

…

…

…

…

…

…

…

1

5

Seg# Base Limit

0

1

…. Heap

1

6

…

…

…

…

…

…

…

…

…

…

…

…

…

…

3

1

3

2

…

…

…

…

…

…

…

…

…

…

…

…

…

…

4

7

4

8

…

…

…

…

…

…

…

…

…

…

…

…

…

…

6

3

Heap

He

ap



Question 3
Paging and TLB

31



Question 3: Paging and TLB

Suppose the system uses the paging scheme with the page 
tables entirely stored in physical memory (DRAM). The page size 
is 4KB, and the logical addresses are 32-bit long.

32

CPU P D

Physical 

Memory

F D

Frame #

Page Table

P



If accessing DRAM takes 50ns (nanoseconds), what is the 
latency of accessing a global variable of type char?

Question 3(a)

33

CPU P D

Physical 

Memory

F D

Frame #

Page Table

P

How many times do we need to access physical memory?



If accessing DRAM takes 50ns (nanoseconds), what is the 
latency of accessing a global variable of type char?

• To access the global variable of type char, 
• The process needs to access it’s page table in memory to get the page 

to frame mapping. 

• Then it can access the actual item in physical memory

• 50ns (access page table) + 50ns (access actual item) = 100ns

Question 3(a)

34



Question 3(b)

Assuming the system uses a TLB and 75% of all page-table 
references hit in the TLB. What is the average memory access 
time? You can assume that looking up a page table entry in TLB 
takes negligible time.

35



Question 3(b)

36

CPU P D

Physical 

Memory

F D

Page # Frame #

TLB

Frame #

Page Table

P

75%



Question 3(b)

Assuming the system uses a TLB and 75% of all page-table 
references hit in the TLB. What is the average memory access 
time? You can assume that looking up a page table entry in TLB 
takes negligible time.

• TLB Hit: 50ns (Access TLB, Physical Memory)

• TLB Miss: 100ns (Access TLB, Page Table, Physical Memory)

• 0.75 * 50ns + (1-0.75)*100ns = 62.5ns

37



Question 3(c)

How many entries does a TLB need to have to achieve a hit ratio 
of 75%? Assume the program generates logical memory 
addresses uniformly at random. 

38



Question 3(c)

39

CPU P D

Physical 

Memory

F D

Page # Frame #

TLB

Frame #

Page Table

P

75%



Question 3(c)

How many entries does a TLB need to have to achieve a hit ratio 
of 75%? Assume the program generates logical memory 
addresses uniformly at random. 

• Page Size = 4KB = 212 Bytes

• Total number of page table entries = 2(32-12) = 220 = 1M entries

• If we assume the memory access are uniformly distributed 
between all the possible pages, then we need at least 1M*0.75 
= 786,432 entries in the TLB. 

40



Question 3(c)

• Do you think a TLB in an actual machine is this large? 
• It seems impossible to have a TLB this large to guarantee a high hit-rate. 

• If not, then how is it possible to achieve a high TLB-hit rate?
• Despite TLB being quite small (32 to 1024 entries) in real-world machines, 

TLB hit ratio is still very high (commonly 99% hit rate) in actual usage.

• This is because memory access is not uniformly distributed.

• This can be understood with the aid of locality principle:

• Temporal Locality: Memory address which is used is likely to be used again

• Spatial Locality: Memory addresses close to a used address is likely to be used

• it is more likely to have repeated memory accesses to same (temporal locality) or 
different (spatial locality) parts of the same memory page in a time interval rather than 
uniformly spread accesses.

41



Question 3(c)

42

• For example, after accessing the 1st 
instruction, it its likely the process 
access the 2nd instruction in the same 
logical page.

• Another way to think of this is that we 
are running a program on our 
computer.

• It is likely that the page to frame 
mappings of the frequently used 
instructions are loaded on the TLB.

Page 0

0

1

2

3

1st Instruction

2nd Instruction

3rd Instruction

4th Instruction

Page 1

4

5

6

7

5th Instruction

6th Instruction

<empty>

<empty>

Page 3

8

9

10

11

1st Data Word

2nd Data Word

3rd Data Word

4th Data Word

Page 4

12

13

14

15

5th Data Word

<empty>

<empty>

<empty>



Question 4
Fragmentation in Buddy Allocator

43



Question 4

i. Calculate the average amount of memory capacity lost to internal 
fragmentation in a system that uses the Buddy allocator. 

ii. Can the Buddy allocator suffer from external fragmentation?

44

2k / 2 = 2k-1

original memory size = 2koriginal memory size = 2k

2k / 2 = 2k-1 2k-1

2k-12k-2 2k-3 2k-3

split in 

half

2k-2 2k-2

split in 

half

2k-3 2k-3

split in 

half

2k-2



Question 4

Calculate the average amount of memory capacity lost to internal 
fragmentation in a system that uses the Buddy allocator. 

• For an allocation request of N bytes: 
• min fragmentation = 0% (exact fit, N=2𝑘), 

• max fragmentation = ~50% (N=2𝑘−1 + 1), 

• on average 25%. 

• Note that internal fragmentation > 50% is not possible.
• Would have been allocated a smaller free block of (N=2𝑘−1)

45



Question 4

Can the Buddy allocator suffer from external fragmentation?

External fragmentation can still happen!

46

128KB

A

(100/128)

128KB

B

(98/128)

256KB

C

(240/256)

256KB

D

(225/256)

128KB

E

(114/128)

128KB

Free

128KB

A

(100/128)

128KB

FREE

256KB

C

(240/256)

256KB

D

(225/256)

128KB

E

(114/128)

128KB

Free

Deallocate B

Suppose we want to allocate Process F, that is 200KB, we are 

unable to do so.



47

END OF TUTORIAL


	Slide 1: Tutorial 8
	Slide 2: Disjoint Memory Management
	Slide 3: Paging Scheme
	Slide 4: Paging Scheme
	Slide 5: Segmentation Scheme
	Slide 6: Segmentation with Paging
	Slide 7
	Slide 8: Question 1
	Slide 9: Question 1
	Slide 10: Question 1
	Slide 11: Q1: Paging
	Slide 12: Q1: Paging
	Slide 13: Q1: Paging
	Slide 14: Q1: Segmentation
	Slide 15: Q1: Segmentation
	Slide 16: Q1: Segmentation with Paging
	Slide 17: Q1: Segmentation with Paging
	Slide 18: Q1: Segmentation with Paging
	Slide 19: Q1: Segmentation with Paging
	Slide 20: Question 2
	Slide 21: Question 2: Dynamic Allocation
	Slide 22: Q2: Contiguous Memory Allocation
	Slide 23: Q2: Contiguous Memory Allocation
	Slide 24: Q2: Contiguous Memory Allocation
	Slide 25: Q2: Contiguous Memory Allocation
	Slide 26: Q2: Pure Paging
	Slide 27: Q2: Pure Paging
	Slide 28: Q2: Pure Paging
	Slide 29: Q2: Pure Segmentation
	Slide 30: Q2: Pure Segmentation
	Slide 31: Question 3
	Slide 32: Question 3: Paging and TLB
	Slide 33: Question 3(a)
	Slide 34: Question 3(a)
	Slide 35: Question 3(b)
	Slide 36: Question 3(b)
	Slide 37: Question 3(b)
	Slide 38: Question 3(c)
	Slide 39: Question 3(c)
	Slide 40: Question 3(c)
	Slide 41: Question 3(c)
	Slide 42: Question 3(c)
	Slide 43: Question 4
	Slide 44: Question 4
	Slide 45: Question 4
	Slide 46: Question 4
	Slide 47

