
Tutorial 7
CS2106: Introduction to Operating Systems

1

Contiguous Memory Management

• In the lecture, we make the following two assumptions
1. Each process occupies a contiguous memory region
2. The physical memory is large enough to contain one or more

processes with complete memory space.
• Process must be in memory during execution
• Store Memory concept
• Load-Store Memory execution model

3

Multitasking, Context Switching & Swapping

• To support multitasking
• Allow multiple processes in the physical memory at the same time
• So that we can switch from one process to another

• When the physical memory is full
• Free up memory by

• Removing terminated process
• Swapping blocked process to secondary storage

4

Partition Allocation Schemes
Fixed Partitioning Dynamic Partitioning

5

Pros:
1. Easy to manage
2. Easy to allocate

Cons:
1. Partition size needs to be large enough to

contain the largest process.
2. Smaller processes will waste memory space

Pros:
1. No internal fragmentation: All processes get

the exact space it requires.

Cons:
1. Need to maintain more information in OS
2. Takes more time to locate appropriate region
3. Prone to external fragmentation

Internal and External Fragmentation

• Fixed Partitioning cannot have external fragmentation.
• Memory is divided into fixed-size partitions.
• Each partition is allocated to a single process.

• Dynamic partitioning cannot have internal fragmentation.
• The exact amount of memory requested by the process is allocated

6

More on Dynamic Partitioning

• Free memory space is also known as a “hole”.
• More holes are created each time a process is created,

terminated or swapped.
• OS maintains a linked list of partition information
• Perform splitting and merging when necessary

• When an occupied partition is freed
• Merge with adjacent hole if possible
• Compaction can also be used to consolidate holes, but it is time

consuming.

7

Dynamic Partitioning: Partition Info

• Can be maintained as a linked list or bitmap.
• Linked List

• Bitmap
• Tutorial 7 Question 1

8

Question 1

9

Question 1: Alternative to Linked List

In the lecture, we used linked list to store partition information
under the dynamic allocation scheme.

10

Question 1: Alternative to Linked List

One common alternative is to use bitmap (array of bits) instead.
• Basic idea: A single bit represents the smallest allocatable

memory space, 0 = free, 1 = occupied.
• Use a collection of bits to represent the allocation status of the

whole memory space.

11

Question 1: Alternative to Linked List

As a tiny example, suppose the memory size is 16KB and the
smallest allocatable unit is 1KB. We need 16 bits (2 bytes) to
keep track of the allocation status:

12

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Allocation Status

Corresponding physical memory layout at this point.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• At this point the whole memory is a single free partition.
• The boxes are drawn to illustrate the allocation unit clearly.

Question 1: Alternative to Linked List

After placing process A (6KB), the bitmap and the corresponding
physical memory layout become:

13

1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0

Allocation Status

Corresponding physical memory layout

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

Question 1: Alternative to Linked List

Give brief pseudo code to:
a) Allocate X KB using the bitmap using first-fit.
b) Deallocate (free) X KB with start location Y.
c) Merge adjacent free space.

Note: For ease of discussion, the pseudo codes are presented
as if array indexing is provided for bitmap.

14

Question 1(a)

Allocate X KB using the bitmap using first-fit.

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0

Index
Allocation Status

1
2
3
4
5

Start ← 0
Start ← Location of the first '0' in the bitmap after Start
If there are X consecutive zeroes, mark [Start…Start+X-1] as 1, success!
Else Start ← The first '1' in the bitmap after Start, repeat step 2.
Stop when bitmap is exhausted.

Question 1(a)

Allocate X KB using the bitmap using first-fit.

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0

Index
Allocation Status

1
2
3
4
5

Start ← 0
Start ← Location of the first '0' in the bitmap after Start
If there are X consecutive zeroes, mark [Start…Start+X-1] as 1, success!
Else Start ← The first '1' in the bitmap after Start, repeat step 2.
Stop when bitmap is exhausted.

Example:
Allocate 5 KB

Start

Start = 0

Question 1(a)

Allocate X KB using the bitmap using first-fit.

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0

Index
Allocation Status

1
2
3
4
5

Start ← 0
Start ← Location of the first '0' in the bitmap after Start
If there are X consecutive zeroes, mark [Start…Start+X-1] as 1, success!
Else Start ← The first '1' in the bitmap after Start, repeat step 2.
Stop when bitmap is exhausted.

Example:
Allocate 5 KB

Start

Start = 6

Question 1(a)

Allocate X KB using the bitmap using first-fit.

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0

Index
Allocation Status

1
2
3
4
5

Start ← 0
Start ← Location of the first '0' in the bitmap after Start
If there are X consecutive zeroes, mark [Start…Start+X-1] as 1, success!
Else Start ← The first '1' in the bitmap after Start, repeat step 2.
Stop when bitmap is exhausted.

Example:
Allocate 5 KB

Start

Start = 6 There isn’t 5 consecutive zeroes

Question 1(a)

Allocate X KB using the bitmap using first-fit.

19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0

Index
Allocation Status

1
2
3
4
5

Start ← 0
Start ← Location of the first '0' in the bitmap after Start
If there are X consecutive zeroes, mark [Start…Start+X-1] as 1, success!
Else Start ← The first '1' in the bitmap after Start, repeat step 2.
Stop when bitmap is exhausted.

Example:
Allocate 5 KB

Start

Start = 10

Question 1(a)

Allocate X KB using the bitmap using first-fit.

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

Index
Allocation Status

1
2
3
4
5

Start ← 0
Start ← Location of the first '0' in the bitmap after Start
If there are X consecutive zeroes, mark [Start…Start+X-1] as 1, success!
Else Start ← The first '1' in the bitmap after Start, repeat step 2.
Stop when bitmap is exhausted.

Example:
Allocate 5 KB

Start

Start = 11 Success! There are 5 consecutive zeroes

Question 1(b)

Deallocate (free) X KB with start location Y.

Straightforward, mark [Y… Y+X-1] as 0. Done!

21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

Index
Allocation Status

Example:
Deallocate 6KB with start location 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

Index
Allocation Status

BEFORE

AFTER

Question 1(c)

Merge adjacent free space.
• No need to do anything ☺.
• This is the benefit of using bitmap as adjacent free spaces are

"merged" automatically.

22

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

Index
Allocation Status

BEFORE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

Index
Allocation Status

AFTER

Example:
Deallocate 6KB with start location 0

Question 2

23

Question 2: Memory Allocation

Consider six memory partitions of size 200 KB, 400 KB, 600 KB, 500
KB, 300 KB and 250 KB.

These partitions need to be allocated to four processes:
P1=357KB, P2=210KB, P3=468KB, P4=491KB in that order.

24

200KB 400KB 600KB 500KB 300KB 250KB

Perform the allocation of processes using:
a) First Fit Algorithm
b) Best Fit Algorithm
c) Worst Fit Algorithm

Note: The main memory in this question has
been divided into fixed size partitions

Memory Allocation Algorithms

1. First Fit: Take the first hole that is large enough
2. Best Fit: Take the smallest hole that is large enough
3. Worst Fit: Take the largest hole

25

Question 2: Memory Allocation

• First Fit

• Best Fit

• Worst Fit

26

200KB 400KB 600KB 500KB 300KB 250KB

200KB 400KB 600KB 500KB 300KB 250KB

200KB 400KB 600KB 500KB 300KB 250KB

P1=357KB, P2=210KB, P3=468KB, P4=491KB 1. First Fit: Take the first hole that is large enough
2. Best Fit: Take the smallest hole that is large

enough
3. Worst Fit: Take the largest hole

Question 2: Memory Allocation

• First Fit

• Best Fit

• Worst Fit

27

200KB 400KB 600KB 500KB 300KB 250KB
P1=357KB P2=210KB P3=468KB

200KB 400KB 600KB 500KB 300KB 250KB
P1=357KB P4=491KB P3=468KB P2=210KB

200KB 400KB 600KB 500KB 300KB 250KB
P1=357KB P2=210KB

Question 2

Which algorithm makes the most efficient use of memory in this
particular case?
• Best Fit Algorithm turns out to be the best in terms of memory

efficiency in this case

Which algorithm has the best average runtime?
• Regarding the runtime, Best Fit and Worst Fit must go through

the entire list, taking O(N) to find the best (worst) candidate.
• First Fit has the best runtime as the search stops as soon as

the first free hole that accommodates the request is available.

28

Question 3

29

Question 3: Modified First Fit

• Suppose we use the following allocation algorithm: for the first
allocation, traverse the list of free partitions from the beginning
of the list until the first partition which can accommodate the
request.
• The following allocations, however, do not start from the

beginning, but instead start from the partition where the
previous allocation was performed.
• Compare this algorithm with First Fit in terms of runtime and

efficiency of memory use.

30

Question 3: Modified First Fit

• Suppose we have a contiguous memory region which uses
dynamic partitioning scheme.
• Currently, the memory region looks like this after multiple

process allocations and deallocations.

31

Total: 8MB = 8192KB

1600KB
(Occupied)

800KB
(Free)

800KB
(Occupied)

1492KB
(Free)

1000KB
(Occupied)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

32

Total: 8MB = 8192KB

First Fit

Allocate P1=1200KB

1600KB
(Occupied)

800KB
(Free)

800KB
(Occupied)

1492KB
(Free)

1000KB
(Occupied)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

33

Total: 8MB = 8192KB

First Fit

Allocate P1=1200KB

1600KB
(Occupied)

800KB
(Free)

800KB
(Occupied)

1492KB
(Free)

1000KB
(Occupied)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

34

Total: 8MB = 8192KB

First Fit

Allocate P1=1200KB

1600KB
(Occupied)

800KB
(Free)

800KB
(Occupied)

1492KB
(Free)

1000KB
(Occupied)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

35

Total: 8MB = 8192KB

First Fit

Allocate P1=1200KB

1600KB
(Occupied)

800KB
(Free)

800KB
(Occupied)

1492KB
(Free)

1000KB
(Occupied)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

36

Total: 8MB = 8192KB

First Fit

Allocate P1=1200KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

37

Total: 8MB = 8192KB

First Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

38

Total: 8MB = 8192KB

First Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

39

Total: 8MB = 8192KB

First Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

40

Total: 8MB = 8192KB

First Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

41

Total: 8MB = 8192KB

First Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

42

Total: 8MB = 8192KB

First Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

43

Total: 8MB = 8192KB

First Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

44

Total: 8MB = 8192KB

First Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

1000KB
(Occ)

1500KB
(Free)

Question 3

• First Fit always starts the search from the beginning of the free
list. Over time, the holes close to the beginning will become too
small, so the algorithm will have to look further down the list,
increasing the search time.
• The described algorithm is known as Next Fit and avoids the

above problem by changing the starting point of the search.
This in turn leads to a more uniform distribution of hole sizes
across the free list and will therefore lead to faster allocation.

45

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

46

Total: 8MB = 8192KB

Next Fit

Allocate P1=1200KB

1600KB
(Occupied)

800KB
(Free)

800KB
(Occupied)

1492KB
(Free)

1000KB
(Occupied)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

47

Total: 8MB = 8192KB

Next Fit

Allocate P1=1200KB

1600KB
(Occupied)

800KB
(Free)

800KB
(Occupied)

1492KB
(Free)

1000KB
(Occupied)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

48

Total: 8MB = 8192KB

Next Fit

Allocate P1=1200KB

1600KB
(Occupied)

800KB
(Free)

800KB
(Occupied)

1492KB
(Free)

1000KB
(Occupied)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

49

Total: 8MB = 8192KB

Next Fit

Allocate P1=1200KB

1600KB
(Occupied)

800KB
(Free)

800KB
(Occupied)

1492KB
(Free)

1000KB
(Occupied)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

50

Total: 8MB = 8192KB

Next Fit

Allocate P1=1200KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

51

Total: 8MB = 8192KB

Next Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

start from the partition where the
previous allocation was
performed

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

52

Total: 8MB = 8192KB

Next Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

53

Total: 8MB = 8192KB

Next Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

54

Total: 8MB = 8192KB

Next Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

2500KB
(Free)

Question 3: Modified First Fit

• Let’s allocate the following processes: P1=1200KB, P2=1000KB

55

Total: 8MB = 8192KB

Next Fit

Allocate P2=1000KB

1600KB
(Occ)

800KB
(Free)

800KB
(Occ)

1200KB
(Occ)

292KB
(Free)

1000KB
(Occ)

1000KB
(Occ)

1500KB
(Free)

Question 4

56

Buddy System

• Idea
• Free block is repeatedly split into

half to meet the request size.
• Two halves form as buddy blocks.
• When buddy blocks are free, they

are merged to form larger blocks
• Benefits

• Efficient partition splitting, locating
of free holes, deallocation and
merging.

57

2k / 2 = 2k-1

original memory size = 2koriginal memory size = 2k

2k / 2 = 2k-1 2k-1

2k-12k-2 2k-3 2k-3

split in half

2k-2 2k-2

split in half

2k-3 2k-3

split in
half

2k-2

Buddy System: Implementation

• Array of size 𝑘 where 2! is the largest allocatable block size.
• Each array element A[S]is a linked list which keeps track of free

blocks of the size 2S.
• Each free block is indicated by just the starting address.

58

Buddy System

Allocation Algorithm
1. Find smallest 𝑆 such that 2! ≥ 𝑁
2. Access A[S] to check if a free

block exists
a) If free block exists

• Remove free block from free block list
• Allocate the block

b) Else
• Find a bigger free block 𝐵 by finding the

smallest 𝑅 from 𝑆 + 1 to 𝐾 such that A[R]
has a free block 𝐵.

• Repeatedly split 𝐵 until A[S] has a free
block.

• Go to step 2.

Deallocation Algorithm
1. Check A[S] where 2S == size of B.
2. If the buddy of B is also free (let the

buddy be C)
• Remove B and C from the list
• Merge B and C to form a larger block B’.
• Go to step 1 where B = B’

3. Else the buddy of B is not free yet.
• Insert B into the list in A[S]

59

Question 4: Buddy System

Given a 1024KB memory with smallest allocatable partition of 1KB,
use buddy system to handle the following memory requests.
i. Allocate: Process A (240 KB)
ii. Allocate: Process B (60 KB)
iii. Allocate: Process C (100 KB)
iv. Allocate: Process D (128 KB)
v. Free: Process A
vi. Free: Process C
vii. Free: Process B

60

Question 4: Buddy System

• Since the smallest allocatable partition is 1KB, lets divide the
memory region into 1024 partitions and assign them indices 0
to 1023

61

0 1 2 3 4 … 1020 1021 1022 1023

62

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

0

Initially: Entire memory is free

The following table keeps track of
blocks that are free.

Currently, there is a free block of
1024KB, which is represented by
1024 1KB partitions

Start Index

• The table on the left keeps track
of free blocks of size 20 to 2k

• Row S represents array element
A[S] which is a linked list which
keeps track of free blocks of
the size 2S

63

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

0

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [A: 240KB]

64

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

0

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [A: 240KB]

65

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [A: 240KB]

0 512 Split #1

66

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [A: 240KB]

0

512

256 Split #2

67

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [A: 240KB]

0

512

256 Select Free Block

68

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [A: 240KB]

512

256

Done!

0, 256K A

Start Address Block Size

After Allocating A
A
256KB
(240)

FREE
256KB

FREE
512KB

69

0 255 256 511 512 1023

70

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [B: 60KB]

512

256

0, 256K A

71

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [B: 60KB]

512

256

0, 256K A

72

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [B: 60KB]

512

256 384

Split #1

0, 256K A

73

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [B: 60KB]

512

256

384

Split #2

320

0, 256K A

74

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [B: 60KB]

512

256

384

Select Free Block

320

0, 256K A

75

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [B: 60KB]

512

384

Done!

320

0, 256K A

256, 64K
B

After Allocating B

76

A
256KB
(240)

FREE
256KB

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

FREE
128KB

FREE
512KB

77

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [C: 100KB]

512

0, 256K A

384

There is one existing
128KB free partition

320

256, 64K
B

78

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [C: 100KB]

512

0, 256K A

384

320

256, 64K
B

Select Free Block

79

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

Allocate [C: 100KB]

512

320

Done!

0, 256K A

256, 64K
B

384, 128K C

After Allocating C
A
256KB
(240)

FREE
256KB

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

FREE
128KB

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

C
128KB
(100)

FREE
512KB

80

81

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Allocate [D: 128KB]

512

320

Since, there is only one
free partition of size
512KB, we need to split
it down further

0, 256K A

256, 64K
B

384, 128K C

82

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Allocate [D: 128KB]

768

320

Split #1512
1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

0, 256K A

256, 64K
B

384, 128K C

83

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Allocate [D: 128KB]

Split #2
1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

0, 256K A

256, 64K
B

384, 128K C

768

320

512 640

84

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Allocate [D: 128KB]

768

320

Select Free Block

512 1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

640

0, 256K A

256, 64K
B

384, 128K C

85

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Allocate [D: 128KB]

768

0, 256K
A

320

256, 64K
B

384, 128K C

Done!
1. Smallest S, such that 2S >= N
2. Does A[S] has a free block?
3. Yes: Remove from list and return
4. No

a. Find smallest R from S+1 to K
such that A[R] has a free block

b. For R-1 to S
i. Split

c. Goto 2

640

512, 128K
D

After Allocating D
A
256KB
(240)

FREE
256KB

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

FREE
128KB

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

C
128KB
(100)

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

C
128KB
(100)

D
128KB
(128)

FREE
128KB

FREE
256KB

86

87

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free A

768

320

640

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

0, 256K
A

256, 64K
B

384, 128K C

512, 128K
D

88

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free A

768

320

640

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

256, 64K
B

384, 128K C

512, 128K
D

0

8th bit

0 = 0000000000
768 = 1100000000

Does the buddy block exist?

89

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free A

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

256, 64K
B

384, 128K C

512, 128K
D

8th bit

0 = 0000000000
768 = 1100000000

Does the buddy block exist?

No.

768

320

640

0

90

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free A

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

256, 64K
B

384, 128K C

512, 128K
D

Insert Block into Free List

768

320

640

0

After Freeing A
A
256KB
(240)

FREE
256KB

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

FREE
128KB

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

C
128KB
(100)

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

C
128KB
(100)

D
128KB
(128)

FREE
128KB

FREE
256KB

FREE
256KB

B
64KB
(60)

FREE
64KB

C
128KB
(100)

D
128KB
(128)

FREE
128KB

FREE
256KB

91

92

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free C

768

320

640

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

256, 64K
B

384, 128K C

512, 128K
D

0

93

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free C

768

320

640

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

256, 64K
B

512, 128K
D

0

384

94

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free C

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

256, 64K
B

512, 128K
D

Does the buddy block exist?

384 = 0110000000
640 = 1010000000

7th bit

768

320

640

0

384

95

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free C

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

256, 64K
B

512, 128K
D

Does the buddy block exist?

384 = 0110000000
640 = 1010000000

7th bit

No.768

320

640

0

384

96

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free C

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

256, 64K
B

512, 128K
D

Insert Block into Free List

768

320

640

0

384

After Freeing C
A
256KB
(240)

FREE
256KB

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

FREE
128KB

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

C
128KB
(100)

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

C
128KB
(100)

D
128KB
(128)

FREE
128KB

FREE
256KB

FREE
256KB

B
64KB
(60)

FREE
64KB

C
128KB
(100)

D
128KB
(128)

FREE
128KB

FREE
256KB

FREE
256KB

B
64KB
(60)

FREE
64KB

FREE
128KB

D
128KB
(128)

FREE
128KB

FREE
256KB

97

98

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free B

768

320

640

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

256, 64K
B

512, 128K
D

0

384

99

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free B

768

320

640

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

0

384

256

512, 128K
D

100

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free B

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

512, 128K
D

256 = 100000000
320 = 101000000

6th bit

Does the buddy block exist?

768

320

640

0

384

256

101

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free B

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

512, 128K
D

256 = 100000000
320 = 101000000

6th bit

Does the buddy block exist?

Yes!
768

320

640

0

384

256

102

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free B

768

640

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

0

384256

512, 128K
D

Merge with buddy

103

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free B

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

512, 128K
D

Does the buddy block exist?

256 = 100000000
384 = 110000000

7th bit768

640

0

384256

104

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free B

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

512, 128K
D

Does the buddy block exist?

256 = 100000000
384 = 110000000

7th bit
Yes!

768

640

0

384256

105

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free B

768

640

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

0 256

512, 128K
D

Merge with buddy

106

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free B

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

512, 128K
D

Does the buddy block exist?

256 = 100000000
0 = 000000000

8th bit768

640

0 256

107

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free B

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

512, 128K
D

Does the buddy block exist?

256 = 100000000
0 = 000000000

8th bit
Yes!

768

640

0 256

108

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free B

768

640

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

0

512, 128K
D

Merge with buddy

109

K

10
210 = 1024

9
29 = 512

8
28 = 256

7
27 = 128

6
26 = 64

...

0
20 = 1

Free B

768

640

1. Check A[S] where 2S == size of B
2. Does the buddy C of B exist?

a. Merge: B’ = B + C
b. Goto 1 with B = B’

3. Insert B to A[S]

0

512, 128K
D

Done!

A
256KB
(240)

FREE
256KB

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

FREE
128KB

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

C
128KB
(100)

FREE
512KB

A
256KB
(240)

B
64KB
(60)

FREE
64KB

C
128KB
(100)

D
128KB
(128)

FREE
128KB

FREE
256KB

FREE
256KB

B
64KB
(60)

FREE
64KB

C
128KB
(100)

D
128KB
(128)

FREE
128KB

FREE
256KB

FREE
256KB

B
64KB
(60)

FREE
64KB

FREE
128KB

D
128KB
(128)

FREE
128KB

FREE
256KB

FREE
512KB

D
128KB
(128)

FREE
128KB

FREE
256KB

110

After Freeing B

Question 5

111

Question 5: Bookkeeping Overhead

Regardless of the partitioning schemes, the kernel needs to
maintain the partition information in some way (e.g. linked lists,
arrays bitmaps etc). These kernel data, which is the overhead of
the partitioning scheme, can consume considerable memory
space.

112

Question 5: Bookkeeping Overhead

Given an initially free memory space of 16MB (224 Bytes), briefly
calculate the overhead for each of the scheme below. You
should try to find a representation that reduces the overhead if
possible.
For simplicity, you can assume the following size during
calculation:
• Starting address, Size of partition or Pointer = 4 bytes each
• Status of partition (occupied or not) = 1 byte

113

Question 5(a)

Fixed-Size Partition: Each partition is 4KB size (212). What is
minimum and maximum overhead?
• There are (16MB/4KB = "

!"

"#! = 212) partitions in this scheme.
• The simplest representation is to have an array of 212 entries, each entry

represent the status of a partition (occupied or free).
• Total overhead = 212 entries * 1byte each = 4096 bytes
• As the partition number is fixed, maximum overhead = minimum overhead

114

1 KB = 210 Bytes
1 MB = 220 Bytes

Question 5(b)

Dynamic-Size Partition (Linked List): The smallest request size is
1KB (210), the largest request size is 4KB.
What is the minimum and maximum overhead using linked list?
Allocations happen in multiples of 1 KB.

115

• A common linked list node structure contains
• { Start Address, Partition Size, Status, Next Node Pointer}

• Size of one node = 3*4 + 1 = 13 bytes

For simplicity, you can assume the following size during calculation:
• Starting address, Size of partition or Pointer = 4 bytes each
• Status of partition (occupied or not) = 1 byte

Question 5(b)

• Minimum Overhead
• When the whole partition is free, only one node is needed.
• Overhead = 13 bytes

• Maximum Overhead
• If every request is of the smallest size, we have the maximum number

of partitions:
• (16MB / 1KB = "

!"

"#$ = 214 Partitions).
• Overhead = 214 partitions * 13 bytes per node = 212922 bytes

116

F 0 16777216 NULL

Question 5(c)

Dynamic-Size Partition (Bitmap, see Q1): The smallest request
size is 1KB (210), the largest request size is 4KB. What is the
minimum and maximum overhead using bitmap?
• Assume that we follow Q1, such that the smallest allocatable unit is 1KB.
• The status for each allocatable unit (1KB) can be represented by each bit

(1 bit) in the bitmap.
• There are "

!"

"#$
= 214 bits in the bitmap.

• Notice that the size of the bitmap is NOT affected by the number of
partitions, hence minimum == maximum overhead.
• Overhead = 214 bits / 8 bits = 211 bytes = 2,048 bytes.

117

1 Byte = 8 Bits
1 KB = 210 Bytes
1 MB = 220 Bytes

118

END OF TUTORIAL

