Tutorial 6

CS2106: Introduction to Operating Systems




Synchronization

 The execution outcome is non-deterministic

* when two or more processes execute concurrently in
interleaving fashion

 and share a modifiable resource.
* Why?

. T
S
. T

ne execution outcome depends on the order in which the
nared resource is accessed or modified.

NIS results in a race condition.




How to prevent Race Conditions?

* Define a critical section //Normal code
* |t is a part of the program where a . Enter CS
shared resource is accessed or Critical //critical Work
modified Section
I Exit Cs
* Use synchronization to ensure //Normal code

mutual exclusion

* only one thread/process can access
the critical section at a time

« Synchronization Mechanisms
 Test and Set
* Peterson’s Algorithm
« Semaphores



Question 1



S 42"/

Recap: Semaphores Ll md

£3n0*‘
« Semaphore

 Visualize it as a protected integer with a
list to keep track of waiting processes

* Let S be the integer value.

» Operations
* Wait(), P() [proberen], down()
e Signal(), V() [verhogen], up()

« Semaphore Behaviour

* When the value of S = 0, processes will
wait on the semaphore.

* signal () wakes up the next process

4 - [
Vs Semaphore S

e List of processes

o

Process blocks (sleeps) if S < 0, otherwise
decrement the integer value by 1

Increment the integer value by 1, wakes
up (unblocks) a sleeping process if any



*Note: P(), V() are a common alternative name

QUGStIOﬂ 1 : SemaphOreS for Wait () and Signal () respectively.

» Consider three concurrently executing tasks using two semaphores S
and S; and a shared variable x. —

. Assume S1 has been initialized to 1, while S2 has been initialized to O.

 What are the possible values of the global variable X, initialized to O, after
all three tasks have terminated? n —

I - . initialization

P(S2); P(S1); P(S1); =1; €
P(S1); X = X * X; X = X + 3; SZ —_@:,&
X = x * 2; V(S1); V(S2); = 0; =—

V(S1); V(S1);



=
1S2 | (A s1

1;
Question 1: Semaphores Iy

V’\_J X = @—,’
» Consider all possible task execution orders.

A !Al_h
:g’ g’g  P(S2); P(S1); <—  P(51);<—
7 P(S1); €= x = X * x; X = X + 3;
*B,CA W/ X=X *25e— V(S1);<&— V(S2); &
‘ g g,/'i V(S1);c— V(S1); =

* Are there any restrictions?
« Task C must execute before Task A
» Task A will wait on semaphore S2 because the value of S2 is 0.



Initialization

. S1 =1;
Question 1: Semaphores s2 - o
= 0;
» Consider all possible task execution orders.
ArByC A B C___
A P(Sz){ P(S1); | P(S1); |
P(S1); X = X * x; X = X + 3;
*B,C,A X = X * 2; V(S1); V(S2);
*CAB V(S1); V(S1);
- C,B,A

* Are there any restrictions?
« Task C must execute before Task A
» Task A will wait on semaphore S2 because the value of S2 is 0.



|
Question 1: Semaphores

| Task Order

B,C, A 6 Ox0 =0 D+3=3 2x2 <6
C,A B 36 O+% 2%2=b gxp =36
C,B,A 18 042 2£3=0 qxr2c=|£

The possible values of x are 6, 18 and 36

N -
P(S2); P(S1); P(S1); = 1;
P(S1); X =X *¥x; X=X+ 3; sz 0;

X = X * 2; V(S1); V(S2); = 0;

V(51)3 V(Sl); 9



Question 2



Question 2: Barrier

In cooperating concurrent tasks, sometimes we need to ensure that all N
tasks reach a certain point in code before proceeding. This specific
synchronization mechanism is commonly known as a batrriet.

// some code
Barrier( N ); // The first N-1 tasks reaching this point

// will be blocked.
// The arrival of the Nth task will release
// all N tasks.

// Code here only get executed after all N processes
// reached the barrier above.

« Use semaphores to implement a one-time use Barrier () function

without using any form of loops.
 Remember to indicate the variables declarations clearly.



Question 2: Barrier

» Goal: Code a barrier mechanism that waits for all N tasks to
reach a certain point in code before proceeding.

Example: N =3 Task A arrives

Barrier

Task A is waiting on the Barrier



Question 2: Barrier

» Goal: Code a barrier mechanism that waits for all N tasks to
reach a certain point in code before proceeding.

Example: N =3 Task B arrives

-

Barrier

Task A and B are waiting on the Barrier

13



Question 2: Barrier

» Goal: Code a barrier mechanism that waits for all N tasks to
reach a certain point in code before proceeding.

Example: N =3 Task C arrives

All 3 tasks are released

14



Question 2: Barrier

» Goal: Code a barrier mechanism that waits for all N tasks to
reach a certain point in code before proceeding.

Example: N =3

All 3 tasks are released

15



Question 2: Barrier

» Goal: Code a barrier mechanism that waits for all N tasks to
reach a certain point in code before proceeding.

Example: N =3

All 3 tasks are released

16



Question 2: Barrier

» Goal: Code a barrier mechanism that waits for all N tasks to
reach a certain point in code before proceeding.

Example: N =3

All 3 tasks are released

17



Question 2: Barrier

* Note that this question mainly uses pseudocode.
* Declaring a semaphore:

e Semaphore s = 1;

« Semaphore Operations:
* Walit (S)
* Signal (S)

 How do we keep track of the number of tasks that have arrived
at the barrier?

* WWe must use a shared variable to keep track



{

N=3

Question 2: Barrier
4 23

int arrived =07 //shared variable <
Semaphore mutex = 1; //binary semaphore to provide mutual exclusion

Semaphore waitQ ,€;+z/for N-1 process to blocks
Barrier( N ) { }ZLJ/j9é+—\ ) \ B3 [ < ]
m— -

wait( mutex ); 22— |

.Parrived ++; >

signal ( mutex ) ;

if (arrived == N) 3
&

|
(
I
| |
)
‘ ‘
signal ( waitQ ) . — <] __J
| )
(
wait( waitQ ); — - _ . |j%7 - %{LZ — Lfé; — —
—_— 0 \
E ! -

signal( waitQ ); . e

20




Question 3



Question 3: Deadlocks 23

Stubborn Villager Problem \ l )

* A village has a long but narrow bridge that does not allow
people crossing in opposite directions to pass by each other.

* All villagers are very stubborn, and will refuse to back off if they
meet another person on the brldge coming from the opposﬂe

direction.

R NSV 2




Question 3(a)

Explain how the behaviour of the villagers can lead to a
deadlock.

Two villagers on different sides of the bridge trying to cross at
the same time will lead to a deadlock.

23



Question 3(b) o~

\

1 |
Analyse the correctness of the following solution and identify the
problems, if any.

Semaphore sem =,&1’}2V !

void enter bridge() void exit bridge()

{ {

sem.wait(); sem.signal();

} } 24



Question 3(b)

Semaphore sem

I
H
o o

void enter bridge() void exit bridge()

{ {

sem.wait(); sem.signal();

} }

* |t resolves the deadlock
* However, it allows only a single villager to cross at a time.

« A second villager crossing the bridge in the same direction cannot walk behind
the first one and instead needs to wait for the first one to exit the bridge.

25



~

— &\Mﬂf‘\ 4‘ O
Question 3(c) -
] 1

Modify the above solution to support multiple people crossing
the bridge in the same direction. You are allowed to use a single

shared variable and a single semaphore.

 Introduce a shared integer variable that keeps track of the
direction of crossing.

* We can use an integer value such that
* 0 = Nobody is crossing the bridge
« > 1 = Villagers are crossing the bridge in direction 1 ( left + m&w )
« < —1 = Villagers are crossing the bridge in direction 2 R&J W ts LA N

26



1A] g

L_—-

Question 3(c)
o 4 )

> |

Semaphore mutex=l7 < Binory Le

int crossing =/0’l,:k\_\<'—' PDifection of may'no\ /lbwu"-A#) 2-

Direction1 (LeH 4o Rt )

/

void ente:_bridge_directfgnl() P¥-53

{ <_] ‘
bool pass=false; ("

while (!'pass) { oo
mutex.wait (), =<— <

t
1 t

}
mutex.signal () ; <E§~—- g

—_\/C
if (crossing>=0) { One
crossing++; vilom e |
/ pass=true; = ‘:3 .
| v

void exit bridge directionl ()
{
mutex.wait() ;
crossing--;
mutex.signal () ;

27




Question 3(c)

©
— X

~

L

(]

I

|

Semaphore mutex=1; =
int crossing = 0;, &&—

Direction2 ( Rijnmt ¢o L)

void enter bridge direction2 ()
{
bool pass=false;
while (!'pass) {
mutex.wait() ;

if (crossing<=0) {
crossing--;
pass=true;

}

mutex.signal () ;

void exit bridge direction2()
{
mutex.wait() ;
crossing++;
mutex.signal () ;

28




8e ——= M
Question 3(d) T I

What is the problem with solution in (c)?

The problem with this solution is that it allows the villagers
crossing in one direction to indefinitely starve the villagers
crossing in the other direction.

29



Question 4



Question 4: General Semaphore

A general semaphore (S > 1) can be implemented by using binary
semaphore (S == 0 or 1). Consider the following attempt:

int count = <initially: any non-negative integer>;
Semaphore mutex = 1; //binary semaphore
Semaphore queue = 0; //binary semaphore, for blocking tasks
GeneralWait () { GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;
if (count < 0) { if (count <= 0) {
signal (mutex) ; signal (queue) ;
wait (queue) ; }
} else { signal (mutex) ;
signal (mutex) ; }
}
}




Question 4(a)

* The solution is very close.

» Unfortunately, it can still have undefined behavior in some
execution scenarios.

« Give one such execution scenario to illustrate the issue. (hint:
binary semaphore works only when its value S=0o0r S =1).

Can we create a situation where either the value of mutex semaphore
or the queue semaphore is not 0 or 1?

32



Scenario for Question 4(a)

Suppose we have 4 tasks A, B, C and D.
Initially count = 2 (To allow task C and D to go through)

After Task C and D have execute GeneralWait ()
e Countis now 0.

Now, two tasks A and B execute GeneralWait ()

« Astask A clears the signal (mutex), task B gets to executes until the
same line.

At this point, count is -2.
Tasks C and D now executes GeneralSignal () in turns.
* Both of them will perform signal (queue)as count <0

* The value of the queue semaphore will now be 2.

« Since queue is a binary semaphore, the 2nd signal () will have undefined
behavior



Question 4(a)

Semaphore

Semaphore

Processes: B n

GeneralWait () {

wait (mutex) ;

count = count - 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

} else {
signal (mutex) ;

GeneralSignal () {
wait (mutex) ;
count = count + 1;

if (count <= 0) {
signal (queue) ;
}

signal (mutex) ;

Start with C

34



Question 4(a)

Semaphore

Semaphore

processes: () [ED (B

GeneralWait () GeneralSignal () {
wait (mutex) ; C wait (mutex) ;
count = count - 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

} else {

signal (mutex) ;

count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

35



Question 4(a)

Semaphore

Semaphore

processes: () [ED (B

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; P&

if (count < 0) {
signal (mutex) ;
wait (queue) ;

} else {

signal (mutex) ;

count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

36



Question 4(a)

Semaphore

Semaphore

processes: () [ED (B

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

} else {

signal (mutex) ;

count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

37



Question 4(a)

Semaphore

Semaphore

processes: () [ED (B

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

} else {

signal (mutex) ;

count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

Interleave to D

38



Question 4(a)

Semaphore

Semaphore

Processes: B

GeneralWait () GeneralSignal () {
wait (mutex) ; B wait (mutex) ;
count = count - 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

} else {

signal (mutex) ;

count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

39



Question 4(a)

Semaphore

Semaphore

Processes: B

GeneralWait () {

wait (mutex) ;

count = count - 1 n

if (count < 0)
51gna1(mutex),
wait (queue) ;

} else {
signal (mutex) ;

GeneralSignal () {
wait (mutex) ;

count = count + 1;

if (count <= 0) {

signal (queue) ;

}

signal (mutex) ;

40



Question 4(a)

Semaphore

Semaphore

Processes: B

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1;

if (count < 0) {
signal (mutex) ;

wait (queue) ;
} else {

signal (mutex) ; B

count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

41



Question 4(a)

Semaphore

Semaphore

Processes: B

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

} else {

signal (mutex) ;

count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

= &

42



Question 4(a)

Semaphore

Semaphore

Processes: B

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

} else {

signal (mutex) ;

count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

= &

43



Question 4(a)

Semaphore

Semaphore

Processes: B

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

} else {

signal (mutex) ;

count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

= &

44



Question 4(a)

Semaphore

Semaphore

Processes: B

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1;

if (count < 0) {

signal (mutex) ;
wait (queue) ;
} else {

signal (mutex) ;

count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

= &

45



Question 4(a)

Semaphore

Semaphore

Processes: B

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1;

if (count < 0) {

signal (mutex) ;
wait (queue) ;
} else {

signal (mutex) ;

count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

= &

Interleave to B

46



Question 4(a)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; ﬂ wait (mutex) ;
count = count - 1;

if (count < 0) {

signal (mutex) ;
wait (queue) ;
} else {

signal (mutex) ;

count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

= &

47



Question 4(a)

Semaphore

Semaphore

Processes:

GeneralWait () {
wait (mutex) ;

count = count - 1; ﬂ
if

(count < 0) {

signal (mutex) ;
wait (queue) ;
} else {

signal (mutex) ;

GeneralSignal () {
wait (mutex) ;
count = count + 1;
if (count <= 0) {
signal (queue) ;
}

signal (mutex) ;

= &

48



Question 4(a)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1' count = count + 1;
if (count < 0)

signal (mutex) . B

wait (queue) ;
} else {

signal (mutex) ; }

if (count <= 0) {

signal (queue) ;

}

signal (mutex) ;

= &

Interleave to C

49



Question 4(a)

Semaphore

Semaphore

Processes:

GeneralWait () {
wait (mutex) ;
count = count - 1'
if (count < 0)

signal (mutex) . B

wait (queue) ;
} else {

signal (mutex) ; }

GeneralSignal () {
wait (mutex) ;
count = count + 1;
if (count <= 0) {
signal (queue) ;

}

signal (mutex) ;

50



Question 4(a)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1' count = count + 1;
if (count < 0)

signal (mutex) . B

wait (queue) ;
} else {

signal (mutex) ; }

if (count <= 0) {

signal (queue) ;

}

signal (mutex) ;

51



Question 4(a)

Semaphore

Semaphore

Processes:

GeneralWait () {
wait (mutex) ;
count = count - 1'
if (count < 0)

signal (mutex) . B

wait (queue) ;
} else {

signal (mutex) ; }

GeneralSignal () {
wait (mutex) ;
count = count + 1;
if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

52



Question 4(a)

Semaphore

Semaphore

Processes:

GeneralWait () {
wait (mutex) ;
count = count - 1'
if (count < 0)

signal (mutex) . B

wait (queue) ;
} else {

signal (mutex) ; }

GeneralSignal () {

wait (mutex) ;

count = count + 1;

if (count <= 0) {
signal (queue) ;

}

signal (mutex) ;

53



Question 4(a)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ; n
count = count - 1' count = count + 1;
if (count < 0)

signal (mutex) . B

wait (queue) ;
} else {

signal (mutex) ; }

if (count <= 0) {

signal (queue) ;
}

signal (mutex) ;

Done:

Interleave to D

54



Question 4(a)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1' count = count + 1;
if (count < 0)

signal (mutex) . B

wait (queue) ;
} else {

signal (mutex) ; }

if (count <= 0) {

signal (queue) ;

}

signal (mutex) ;

Done:

Interleave to D

55



Question 4(a)

Semaphore

Semaphore

/‘ Undefined Behaviour

Interleave to D

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;
if (count < 0) if

wait (queue) ;
} else {

signal (mutex) ;

signal (mutej:) ; B

(count <= 0)

signal (mutex) ;

signal (queue) ; B

{

Done:

56



Question 4(b)

» Correct the attempt.

* Note that you only need very small changes to the two functions.

int count = <initially: any non-negative integer>;
Semaphore mutex = 1; //binary semaphore
Semaphore queue = 0; //binary semaphore, for blocking tasks
GeneralWait () { GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;
if (count < 0) { if (count <= 0) {
signal (mutex) ; signal (queue) ;
wait (queue) ; }
} else {
signal (mutex) ; signal (mutex) ;
} }
}




Question 4(b)

« Using the same execution scenario in (a), task D will not be
able to do the 2nd signal (queue) as the mutex is not

unlocked.

* Either Task A or B can clears the wait (queue), then
signal (mutex) allowing task D to proceed.

« At this point in time, the queue value has settled back to 0.
* Hence, there is no undefined signal (queue).




Question 4(b)

Semaphore

Semaphore

Processes: B n

GeneralWait () {
wait (mutex) ;
count = count - 1;
if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

GeneralSignal () {
wait (mutex) ;

if (count <= 0) {

signal (queue) ;
}

else {

signal (mutex) ;

count = count + 1;

Start with C

59



Question 4(b)

Semaphore

Semaphore

GeneralWait () {
wait (mutex) ;
count = count - 1;
if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

GeneralSignal () {
wait (mutex) ;

count = count + 1;

if (count <= 0) {

signal (queue) ;
}

else {

signal (mutex) ;

Start with C

60



Question 4(b)

Semaphore

Semaphore

GeneralWait () {
wait (mutex) ;
count = count - 1; P&
if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

GeneralSignal () {
wait (mutex) ;

count = count + 1;

if (count <= 0) {

signal (queue) ;
}

else {

signal (mutex) ;

Start with C

61



Question 4(b)

Semaphore

Semaphore

GeneralWait () {
wait (mutex) ;
count = count - 1;
if (count < 0) {
signal (mutex) ;
wait (queue) ;

}
signal (mutex) ;

GeneralSignal () {
wait (mutex) ;

count = count + 1;

if (count <= 0) {

signal (queue) ;
}

else {

signal (mutex) ;

Start with C

62



Question 4(b)

Semaphore

Semaphore

GeneralWait () {
wait (mutex) ;
count = count - 1;
if (count < 0) {
signal (mutex) ;
wait (queue) ;
}

signal (mutex) ;

GeneralSignal () {
wait (mutex) ;
count = count + 1;
if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

Interleave to D

63



Question 4(b)

Semaphore

Semaphore

Processes: B

GeneralWait () {
wait (mutex) ; n
count = count - 1;
if (count < 0) {
signal (mutex) ;
wait (queue) ;
}

signal (mutex) ;

GeneralSignal () {
wait (mutex) ;
count = count + 1;
if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

64



Question 4(b)

Semaphore

Semaphore

Processes: B

GeneralWait () {
wait (mutex) ;
count = count - 1;
if (count < 0) {
signal (mutex) ;
wait (queue) ;
}

signal (mutex) ;

GeneralSignal () {
wait (mutex) ;
count = count + 1;
if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

65



Question 4(b)

Semaphore

Semaphore

Processes: B

GeneralWait () {
wait (mutex) ;
count = count - 1;
if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ; B

GeneralSignal () {
wait (mutex) ;
count = count + 1;
if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

C D

66



Question 4(b)

Semaphore

Semaphore

Processes: B

GeneralWait () {
wait (mutex) ;
count = count - 1;
if (count < 0) {
signal (mutex) ;
wait (queue) ;
}

signal (mutex) ;

GeneralSignal () {
wait (mutex) ;
count = count + 1;
if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

C D

Interleave to A

67



Question 4(b)

Semaphore

Semaphore

Processes: B

GeneralWait () {
wait (mutex) ;
count = count - 1;
if (count < 0) {
signal (mutex) ;
wait (queue) ;
}

signal (mutex) ;

GeneralSignal () {
wait (mutex) ;
count = count + 1;
if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

C D

68



Question 4(b)

Semaphore

Semaphore

Processes: B

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

C D

69



Question 4(b)

Semaphore

Semaphore

Processes: B

GeneralWait () {
wait (mutex) ;
count = count - 1;
if (count < 0) {
signal (mutex) ;
wait (queue) ;
}

signal (mutex) ;

GeneralSignal () {
wait (mutex) ;
count = count + 1;
if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

C D

Interleave to B

70



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; B wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {

signal (mutex) ;

wait (queue) ;
}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

C D

71



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; B count = count + 1;

if (count < 0) {

signal (mutex) ;

wait (queue) ;
}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

C D

72



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0)

signal (mutej:) ; B

wait (queue) ;
}

signal (mutex) ;

1f (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

C D

Interleave to C

73



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0)

signal (mutej:) ; B

wait (queue) ;
}

signal (mutex) ;

1f (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

74



Question 4(b)

Semaphore

Semaphore

Processes:
GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1; &

if (count < 0)

signal (mutej:) ; B

wait (queue) ;
}

signal (mutex) ;

1f (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

75



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0)
signal (mut
wait (queue

}

signal (mutex) ;

- ;3 BB

) ;

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

76



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0)

signal (mutej:) ; B

wait (queue) ;
}

signal (mutex) ;

1f (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

}

Done:

Interleave to D

77



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ; B
count = count - 1; count = count + 1;

if (count < 0)

signal (mutej:) ; B

wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}
else {
signal (mutex) ;

}

Done:

Interleave to A
because D is blocked

78



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ; B
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;

wait (queue) ; -
}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

}

Done:

79



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ; B
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

}

Done:

80



Question 4(b)

Semaphore

Semaphore

Processes: Interleave to B
GeneralWait () { GeneralSignal () {
wait (mutex) ; wait (mutex) ; B
count = count - 1; count = count + 1;
if (count < 0) { if (count <= 0) {
signal (mutex) ; B signal (queue) ;
wait (queue) ; }
} else {
signal (mutex) ; signal (mutex) ;
} }
}

Done:

81



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ; B
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}
else {
signal (mutex) ;

}

Done:

Interleave to D
because B is blocked

82



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ; B
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}
else {
signal (mutex) ;

}

Done:

D proceeds

83



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

}

Done:

84



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

}

if (count <= 0) {

signal (queue) ; .:
}

else {
signal (mutex) ;

Done:

85



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

}

Done: B

Interleave to A

86



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}
else {
signal (mutex) ;

}

Done: B

Interleave to B
because A is blocked

87



Question 4(b)

Semaphore

Processes:

Semaphore

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

}

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

Done: B

B Proceeds

88



Question 4(b)

Semaphore

Processes:

Semaphore

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

}

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

Done: B

B proceeds

89



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

}

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

Done: B

Interleave to A

90



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

}

if (count <= 0) {
signal (queue) ;
}
else {
signal (mutex) ;

Done: B

A proceeds

91



Question 4(b)

Semaphore

Semaphore

Processes:
GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1; PVA

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

}

Done: B

92



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {

signal (mutex) ;

}

Done: B

93



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

}

oone: () (D

Interleave to B

94



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

}

oone: () (D

B proceeds

95



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {
signal (mutex) ;

}

oone: () (D

96



Question 4(b)

Semaphore

Semaphore

Processes:

GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}

else {

signal (mutex) ; B

}

oone: () (D

97



Question 4(b)

Semaphore

Semaphore

Processes:
GeneralWait () GeneralSignal () {
wait (mutex) ; wait (mutex) ;
count = count - 1; count = count + 1;

if (count < 0) {
signal (mutex) ;
wait (queue) ;

}

signal (mutex) ;

if (count <= 0) {
signal (queue) ;
}
else {
signal (mutex) ;

}

oone: () 0 €9 ED

All Done!

98



Question 5



Background: Dining Philosopher’s Problem

Background

* There are N philosophers and N chopsticks. \ /

« To be able to eat, a philosopher must be able to

pick up both its left and right chopstick. T//J B

 Problem:

« If all philosophers pick up their left chopstick, none can
proceed.

 Solution(s):
* Only allow one philosopher to eat at a time.
» Tanenbaum Solution




Background: Dining Philosopher’s Problem

Solution A: Only allow one philosopher to
eat at a time.

» Define eating as a critical section.

* |f a philosopher picks up a chopstick, other

= —
philosophers cannot pick up any chopstick. I

101



Background: Dining Philosopher’s Problem

Solution B: Tanenbaum Solution

#define N 5
#define LEFT ((i+N-1)% N)
#define RIGHT ((i+l) % N)

#define THINKING O
#define HUNGRY 1
#define EATING 2

int state[N];
Semaphore mutex = 1;
Semaphore s|[N];

void philosopher( int i ) {
while (TRUE) {
Think( ) ;
takeChpStcks( i );
Eat( );
putChpStcks( i ) ;

(—-
<

St

St

Sem

St

Sem
St
\ / Sem

= I —_
St

Sem

Right‘! Left

102



Background: Dining Philosopher’s Problem

Solution B: Tanenbaum Solution St

O
void takeChpStcks( i ) Sem

{ St| .
,ﬁwait( mutex ) ; St
state[i] = HUNGRY; Sem | 5
safeToEat( i ); Sem | D
_ﬁsignal( mutex ) ;

wait( s[i] ): R —
}
void safeToEat( i ) &L I
{ l"'fcma.r\/
if ( (state[i] == HUNGRY) && St T _j St
(state[LEFT] !'= EATING) &&
(state [RIGHT] '= EATING) ) ({ Sem | § Sem | O

state[ i ] = EATING &—

Right Left
signal( s[i] ); &——
}

} 103




Background: Dining Philosopher’s Problem

Solution B: Tanenbaum Solution St

void safeToEat( i ) Sem
{
if( (state[i] == HUNGRY) && St
(state[LEFT] != EATING) && St Sem
(state[RIGHT] !'= EATING) ) { Sem
state[ i ] = EATING; %/
signal( s[i] ),

} T/ ——
}

void putChpStcks( i ) I

{ St /'\ /7 St

Sem Sem

wait( mutex );

state[i] = THINKING;

safeToEat( LEFT ); €
safeToEat( RIGHT ); <——

Right Left
signal ( mutex ) ;

} 104




Question 5: Dining Philosopher’s Problem

Our philosophers in the lecture are all left-handed (they pick up the left
chopstick first). If we force one of them to be a right-hander, i.e. pick up the
right chopstick before the left, then it is claimed that the philosophers can
eat without explicit synchronization. Do you think this is a deadlock free
solution to the dining philosopher problem? You can support your claim
informally (i.e., no need for a formal proof).

\ /<D

\

_—
2.
— i



Left Handed Philosophers Right Handed Philosophers

while (TRUE) { while (TRUE) {
Think ( ) ; Think( )’
//hungry, need food! //hungry, need food!
takeChpStck ( LEFT ) ; takeChpStck ( RIGHT ) ;
takeChpStck ( RIGHT ) ; takeChpStck ( LEFT ) ;
Eat( ); Eat( )
putChpStck ( LEFT ) ; putChpStck ( RIGHT ) ;
putChpStck ( RIGHT ) ; putChpStck ( LEFT ) ;

} }

N

= —



Question 5:

 \We claim that this is a deadlock free solution.

* Denote the right hander as R.

Cases to Consider

1. R manages to grab both chopsticks

2. R only manages to grab its right chopstick
3. R does not manage to grab any chopstick

107



- It Rignf
Question 5: 4
2~ LR
Case 1: R manages to grab both chopsticks L ¥

Suppose R can grab the right chopstick, and it
manages to pick up the left chopstick, then R = g

could eat. 'f S >,
GN7S
R LS

108



Question 5:

Case 2: R only manages to grab its right chopstick

&~
* This means that R’s left neighbour would have \ \ /

gotten both chopsticks (because all other diners
take the left chopstick first) and can eat.

 R’s left neighbour would eventually release the ‘
chopsticks, so that R can pick up its left chopstick

and eat.

109



Question 5:

Case 3: R does not manage to grab any chopstick
~ ‘
| » When R is unable to grab the right chopstick, |t \ /

means that R’s right neighbour has taken its left
chopstick.

* Even if all remaining left-handed diners have taken
the left chopstick, R’s left neighbour would be able
to grab its right chopstick because R is still trying
to get its right chopstick

110



END OF TUTORIAL



