
Tutorial 5
CS2106: Introduction to Operating Systems
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Question 1: Race Conditions

Consider the following two tasks, A and B, to be run concurrently and use a 
shared variable x. Assume that:
• load and store of x is atomic
• x is initialized to 0
• x must be loaded into a register before further computations can take 

place.
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Task A Task B

x++; 
x++;

x = 2 * x



Question 1: Race Conditions
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Task A Task B

x++; 
x++;

x = 2 * x

i. How many relevant interleaving scenarios are possible when the two 
threads are executed?

ii. What are all possible values of x after both tasks have terminated? Use 
a step-by-step execution sequence of the above tasks to show all 
possible results.



Question 1: Race Conditions
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Task A Task B

x++; 
x++;

x = 2 * x

Step 1: Break down the High-Level Language into Machine Instructions

Task A Task B

1
2
3

4
5
6

lw $r1, 0(addr(x))
addi $r1, $r1, 1  
sw $r1, 0(addr(x))

lw $r1, 0(addr(x))
addi $r1, $r1, 1  
sw $r1, 0(addr(x))

lw $r1, 0(addr(x))
sll $r1, $r1, 1
sw $r1, 0(addr(x))



Question 1: Race Conditions
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Task A Task B

x++; 
x++;

x = 2 * x

Step 2: Identify which instructions, when interleaved can affect the value of x.

Task A Task B

1
2
3

4
5
6

lw $r1, 0(addr(x))
addi $r1, $r1, 1  
sw $r1, 0(addr(x))

lw $r1, 0(addr(x))
addi $r1, $r1, 1  
sw $r1, 0(addr(x))

lw $r1, 0(addr(x))
sll $r1, $r1, 1
sw $r1, 0(addr(x))

The instructions that load and store 
the value of x into the register can 
affect the value of x when interleaved.

i.e. Lines 1, 3, 4 and 6



Question 1: Race Conditions
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Task A Task B

x++; 
x++;

x = 2 * x

We can simply the machine instructions into just loading and storing X for 
both tasks A and B for easier analysis of the interleaving scenarios later.
• When Store X happens for Task A, we are storing the value of x + 1 in the register back 

into memory.
• Similarly, when Store X happens for Task B, we are storing the value of 2 * x in the 

register back into memory

Task A Task B

A1
A2
A3
A4

Load x
Store x
Load x
Store x

B1
B2

Load x
Store x
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Task A Task B

x++; 
x++;

x = 2 * x

• The order of the instructions A1 to A4 cannot change for Task A.
• Similarly, the order of the instructions B1, B2 cannot change for Task B.
• Let’s see where we can insert B1 and B2 between A1 to A4 without 

affecting the respective order of instructions.
• Firstly, we can insert B1 into one of the five slots between A1 to A4. 

Note that B1 can be inserted before A1 and after A4.

Task A Task B

A1
A2
A3
A4

Load x
Store x
Load x
Store x

B1
B2

Load x
Store x

Slot 1 A1 Slot 2 A2 Slot 3 A3 Slot 4 A4 Slot 5



Question 1: Race Conditions
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Task A Task B

x++; 
x++;

x = 2 * x

• After inserting B1 into a slot, there are six slots where we can insert B2.
• However, there are only 5 + 4 + 3 + 2 + 1 = 15 where B2 can be inserted 

after B1.

Task A Task B

A1
A2
A3
A4

Load x
Store x
Load x
Store x

B1
B2

Load x
Store x

B1 Slot 1 A1 Slot 2 A2 Slot 3 A3 Slot 4 A4 Slot 5
A1 B1 Slot 1 A2 Slot 2 A3 Slot 3 A4 Slot 4
A1 A2 B1 Slot 1 A3 Slot 2 A4 Slot 3
A1 A2 A3 B1 Slot 1 A4 Slot 2
A1 A2 A1 A4 B1 Slot 1



Question 1: Race Conditions
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i. How many relevant interleaving scenarios are possible when the two threads are 
executed?

There are only 5 + 4 + 3 + 2 + 1 = 15 scenarios where B2 can be inserted after B1, hence 
there are 15 relevant interleaving scenarios.

Task A Task B

x++; 
x++;

x = 2 * x

Task A Task B

A1
A2
A3
A4

Load x
Store x
Load x
Store x

B1
B2

Load x
Store x

B1 Slot 1 A1 Slot 2 A2 Slot 3 A3 Slot 4 A4 Slot 5
A1 B1 Slot 1 A2 Slot 2 A3 Slot 3 A4 Slot 4
A1 A2 B1 Slot 1 A3 Slot 2 A4 Slot 3
A1 A2 A3 B1 Slot 1 A4 Slot 2
A1 A2 A1 A4 B1 Slot 1



Question 1: Race Conditions
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ii. What are all possible values of x after both tasks have terminated? Use a step-by-step 
execution sequence of the above tasks to show all possible results.

Task A Task B

x++; 
x++;

x = 2 * x

Task A Task B

A1
A2
A3
A4

Load x
Store x
Load x
Store x

B1
B2

Load x
Store x

Execution Sequence Value
B1, B2, A1, A2, A3, A4 2
B1, A1, B2, A2, A3, A4 2
B1, A1, A2, B2, A3, A4 1
B1, A1, A2, A3, B2, A4 2
B1, A1, A2, A3, A4, B2 0
A1, B1, B2, A2, A3, A4 2
A1, B1, A2, B2, A3, A4 1
A1, B1, A2, A3, B2, A4 2

Execution Sequence Value
A1, B1, A2, A3, A4, B2 0
A1, A2, B1, B2, A3, A4 3
A1, A2, B1, A3, B2, A4 2
A1, A2, B1, A3, A4, B2 2
A1, A2, A3, B1, B2, A4 2
A1, A2, A3, B1, A4, B2 2
A1, A2, A3, A4, B1, B2 4

Answer: Possible Results: 0, 1, 2, 3 and 4
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Question 2: Critical Section

• Can disabling interrupts avoid race conditions? 
• If yes, would disabling interrupts be a good way of avoiding 

race conditions? Explain.
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Question 2: Critical Section

Can disabling interrupts avoid race conditions? 
• What happens when interrupts are disabled?
• Timer Interrupts cannot happen.
• Scheduling algorithms that uses time quantum will not be able to 

switch processes when a process has used up its time slice.
• In theory, the interleaving between processes will not happen.

• So, if we disable interrupts when a process enters a critical 
section and then reenable interrupt after the process exits the 
critical section, it is similar to a process acquiring a universal 
lock and releasing it once exiting the critical section.

14
Refer to Lecture 6 Slide 18



Question 2: Critical Section

If yes, would disabling interrupts be a good way of avoiding race 
conditions? Explain.
• Disabling interrupts is not a good way to avoid race conditions.
• Reasons

• Preemptive scheduling algorithms will not work properly, resulting in the 
operating system not being able to switch tasks and perform other things.

• Many important wakeup signals are provided by interrupt service routines 
and these would be missed by the running process. A process can easily 
block on a semaphore and stay blocked indefinitely, because there is nobody 
to send a wakeup signal.

• Not feasible as user code does not have privileges to disable interrupts.
• Race conditions can still happen in a multi-core environment as another 

process can enter the critical section while running on a different core.
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Question 3
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Question 3

Multi-core platform X does not support semaphores or mutexes. 
However, platform X supports the following atomic function:
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bool _sync_bool_compare_and_swap (int* t, int v, int n);

The above function atomically compares the value at location 
pointed by t with value v. If equal, the function will replace the 
content of the location with a new value n, and return 1 (true), 
otherwise return 0 (false).
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123

1024

1025

1026

…
…

…
…

1027

1028

addresscontent

12341231024t
123v
456n

bool sbcas(int* t, int v, int n);

Note: Shorten _sync_bool_compare_and_swap to sbcas for 
readability.

Before Swapping
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123

1024

1025

1026

…
…

…
…

1027

1028

addresscontent

12344561024t
123v
456n

bool sbcas(int* t, int v, int n);

Note: Shorten _sync_bool_compare_and_swap to sbcas for 
readability.

After Swapping



Question 3

• Your task is to implement function atomic_increment on platform X. 
• Your function should always return the incremented value of referenced 

location t and be free of race conditions. The use of busy waiting is 
allowed.
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int atomic_increment( int* t ) {
    //your code here

}



Question 3

• Your task is to implement function atomic_increment on platform X. 
• Your function should always return the incremented value of referenced 

location t and be free of race conditions. The use of busy waiting is 
allowed.
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int atomic_increment( int* t ) {
    //your code here
    do {
        int temp = *t;
    } while (!_sync_bool_compare_and_swap(t, temp, temp+1));
    return temp+1;
}



Question 3
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int atomic_increment( int* t ) {
    //your code here
    do {
        int temp = *t;
    } while (!_sync_bool_compare_and_swap(t, temp, temp+1));
    return temp+1;
}

• When another process or thread modifies the value at location pointed by 
t, the current process would be stuck at the while loop as it does not 
have a copy of the most updated value at location pointed by t.
• It would constantly fetch the most updated value at location pointed by t 

and only return the incremented value if has a copy of the most updated 
value at location pointed by t.



Question 4
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Question 4

You are required to implement an intra-process mutual exclusion 
mechanism (a lock) using Unix pipes. Your implementation should not use 
mutex (pthread_mutex) or semaphore (sem), or any other synchronization 
construct.
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• Write your lock implementation below in the 
spaces provided. 

• Definition of the pipe-based lock (struct 
pipelock) should be complete, but feel free 
to add any other elements you might need. 

• You need to write code for lock_init, 
lock_acquire, and lock_release.



Recap: Pipe

• TL;DR:
• Can be shared between processes
• FIFO, bounded buffer (size not an issue for us…)
• Read blocks if no data
• Read consumes data when available

25

Process P Process Q

Write Readcd b a

fd[1] fd[0]



Useful System Calls

26

int pipe(int pipefd[2]);

int open(const char *pathname, int flags, mode_t mode);

int close(int fd);

ssize_t read(int fd, void *buf, size_t count);

ssize_t write(int fd, const void *buf, size_t count);



Question 4
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struct pipelock {
 int fd[2];
};

void lock_init(struct pipelock *lock) {
 

pipe( lock->fd );
write( lock->fd[1], "a", 1 );

}

Write Read

fd[1] fd[0]

a

f
d

Explanation: The first write is meant to initialize the lock 
such that exactly one thread can acquire the lock. This is 
done by writing a single character into a pipe.
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struct pipelock {
 int fd[2];
};

void lock_acquire(struct pipelock *lock) {
 

char c;
read(lock->fd[0], &c, 1); 

}

Write Read

fd[1] fd[0]

a

456
123

f
d

Explanation: Since there is only one character in the write end of 
the pipe, only one process can acquire the lock by reading the 
single character from the read end of the pipe. 
Note: Read will block if there is no byte in the pipe.
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struct pipelock {
 int fd[2];
};

void lock_release(struct pipelock *lock) {
 

write( lock->fd[1], "a", 1 );

}

Write Read

fd[1] fd[0]

a

456
123

f
d

Explanation: A process can release the lock by writing exactly one 
byte or a single character back into the write end of the pipe to 
allow another process to acquire the lock. 
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END OF TUTORIAL


