
Tutorial 4
CS2106: Introduction to Operating Systems

1

Tutorial 3 Question 5

The simple MLFQ has a few shortcomings. It is best described
by the scheduling behaviour for the following two cases:
a) (Change of heart) A process with a lengthy CPU-intensive

phase followed by I/O-intensive phase.
b) (Gaming the system) A process repeatedly gives up CPU

just before the time quantum lapses.

5

MLFQ Rules

6

n Basic rules:
1. If Priority(A) > Priority(B) è A runs
2. If Priority(A) == Priority(B) è A and B run in RR

n Priority Setting/Changing rules:
1. New job è Highest priority
2. If a job fully utilized its time slice è Priority Reduced
3. If a job give up / blocks before it finishes the time slice è priority retained.

Tutorial 3 Question 5

Case A: (Change of heart) A process with a lengthy CPU-
intensive phase followed by I/O-intensive phase.
• The process can sink to the lowest priority during the CPU

intensive phase.
• With the low priority, the process may not receive CPU time in

a timely fashion during the I/O phase which degrades the
responsiveness.

7

CPU CPU I/O CPU CPU I/O I/O CPU

Time Quantum = 2 TU
One Box = 1 TU

Priority = 2 Priority = 1 Priority = 0

Tutorial 3 Question 5

Case B: (Gaming the system) A process repeatedly gives up
CPU just before the time quantum lapses.
• The process will retain its priority.
• Since all process enter the system with the highest priority, a

process can keep its high priority indefinitely by using this trick
and receive disproportionately more CPU time than other
processes.

8

Tutorial 3 Question 5

The following are two simple tweaks. For each of the rules,
identify which case (a or b above) it is designed to solve,
then briefly describe the new scheduling behaviour.
i. (Rule 1 – Accounting matters) The CPU usage of a process is

now accumulated across time quanta. Once the CPU usage
exceeds a single time quantum, the priority of the task will be
decremented.

ii. (Rule 2 – Timely boost) All processes in the system will be
moved to the highest priority level periodically.

9

Tutorial 3 Question 5

(Rule 1 – Accounting matters) The CPU usage of a process is now
accumulated across time quanta. Once the CPU usage exceeds a
single time quantum, the priority of the task will be decremented.

• Rule 1 is designed to solve case B so that a process that repeatedly
gives up CPU will not always have the highest priority.
• By accumulating CPU usage, processes in Case B will eventually

overshoot a single time quantum.
• This prevents such processes from hogging the CPU

10

Tutorial 3 Question 5

(Rule 2 – Timely boost) All processes in the system will be
moved to the highest priority level periodically.

Rule 2 is designed to solve case A, so that by periodically
boosting the priority of processes, a process with different
behaviour phases may get a chance to receive CPU time and
remain responsive even after it has sank to the lowest priority.

11

Question 1
It’s Kahoot Time!

12

Question 1(a)

Under what conditions does FCFS (FIFO) scheduling result in the
shortest possible average response time?

13

A B B B C C C C C

Avg Response Time = !	#	$	#	%
&

A A A A A B B B C

Avg Response Time = !	#'	#(
&

A A A B B B C C C

Avg Response Time = !	#&	#)
&

Question 1(a)

Under what conditions does FCFS (FIFO) scheduling result in the
shortest possible average response time?
• FIFO minimizes the average response time if the jobs arrive in

the ready queue in order of increasing job lengths.
• This avoids short jobs arriving later from waiting substantially

for an earlier longer job.
• A special case also exists: when all jobs have the same

completion time (job length).

14

Question 1(b)

Under what conditions does round-robin (RR) scheduling behave
identically to FIFO?

15

Question 1(b)

Under what conditions does round-robin (RR) scheduling behave
identically to FIFO?

RR behaves identically to FIFO if the job lengths are shorter than
the time quantum, since it is essentially a pre-emptive variant of
FIFO.

16

Question 1(c)

Under what conditions does RR scheduling perform poorly
compared to FIFO?

17

Question 1(c)

Under what conditions does RR scheduling perform poorly
compared to FIFO?
• When the job lengths are all the same and much greater than

the time quantum, RR performs poorly in average turnaround
time
• When there are many jobs and the job lengths exceed the time

quantum, RR results in reduced throughput due to greater
overhead from the OS incurred due to context-switches when
jobs are pre-empted

18

Question 1(c)

Under what conditions does RR scheduling perform poorly
compared to FIFO?

19

Avg Turnaround TimeFIFO = &	#)	#*
&

A A B B C C A B C

Avg Turnaround TimeRR = +	#(#*
&

A A A B B B C C C

Question 1(d)

Does reducing the time quantum for RR scheduling help or hurt
its performance relative to FIFO, and why?

• It can both hurt and help performance relative to FIFO.
• Hurt Performance:
• Reducing the time quantum results in more time spent by the CPU

performing context switching.
• This reduces throughput and increases average turnaround time.

• Helps Performance:
• Reducing the time quantum reduces the waiting time for a task to first

receive CPU time, thus increasing initial response time.

20

Question 1(e)

Do you think a CPU-bound (CPU-intensive) process should be
given a higher priority for I/O than an I/O-bound process? Why?

• Yes: CPU processes can be given higher priority for I/O so they
may return to waiting for the CPU, decreasing overall
turnaround time at the expense of response time of I/O-bound
processes
• No: To maximise responsiveness of I/O-bound processes

21

Question 2

22

Question 2: Shared Memory

• In this question, we are going to analyze the pitfalls of having
multiple processes accessing and modifying data at the same
time.
• Compile and run the code in shm.c. The executable accepts

two command line arguments, n and nChild; if no command
line arguments are given, the default values will be used: n is
initialized to 100 and nChild is initialized to 1.

23

Shared Memory: Create

Creates a shared memory segment of size bytes and returns a shared
memory identifier.
• key_t key: A unique key to identify the shared memory segment.
• size_t size: The size of the shared memory segment in bytes.
• int shmflg: Flags to control the creation and access behaviour

24

#include <sys/shm.h>
int shmget(key_t key, size_t size, int shmflg);

https://man7.org/linux/man-pages/man2/shmget.2.html

Shared Memory: Attach

Attaches the shared memory segment associated with the shared memory
identifier, shmid, to the address space of the calling process. It returns the
starting address of the shared memory segment.
• int shmid: Shared memory identifier
• void* shmaddr: To specify a specific memory address to attach the

segment to. If left as NULL, it will attach to the first available address as
selected by the system
• int shmflg: Flags to control the creation and access behaviour

25

#include <sys/shm.h>
void *shmat(int shmid, const void *shmaddr, int shmflg);

https://man7.org/linux/man-pages/man3/shmat.3p.html

Shared Memory: Detach and Destroy

The shmdt() function detaches the shared memory segment located at the
address specified by the argument shmaddr from the calling process's address
space.
• void* shmaddr: Memory address of the shared memory segment.
The shmctl() function performs the control operation specified by op on the
shared memory segment whose identifier is given in shmid.
• When op is set to IPC_RMID, it marks the shared memory segment to be

destroyed after the last process detaches it.

26

#include <sys/shm.h>
int shmdt(const void *shmaddr)
int shmctl(int shmid, int op, struct shmid_ds *buf);

References:
https://man7.org/linux/man-pages/man3/shmdt.3p.html
https://man7.org/linux/man-pages/man2/shmctl.2.html

Code Walkthrough Kernel Space

Process P0

Shared Mem
Id = 1234

Code Walkthrough Kernel Space

Process P0

Shared Mem
Id = 1234

shm

Code Walkthrough Kernel Space

Process P0

Shared Mem
Id = 1234

shm

Process P1

shm

Code Walkthrough Kernel Space

Process P0

Shared Mem
Id = 1234

shm

Process P1

shm

Question 2(a)

The value of the shared memory is initialized to 0, what is the
expected final printed value given n and nChild? (Assuming no
interleaving occurs)

31

Question 2(a)

The value of the shared memory is initialized to 0, what is the
expected final printed value given n and nChild? (Assuming no
interleaving occurs)

Expected Final Value: (1 + nChild) * n

32

Question 2(b)

Run the program multiple times with various values for n and
nChild. Observe the result when n is high (e.g. n = 10000 and
nChild = 10). Explain the results.

33

Question 2(b)

Run the program multiple times with various values for n and
nChild. Observe the result when n is high (e.g. n = 10000 and
nChild = 10). Explain the results.

• We would observe the value to be smaller than expected in
some test cases when n is sufficiently high.
• For a process to increment the variable, it must

1. Read the value from memory (lw $r1, shm[0])
2. Modify it (add $r1, $r1, 1)
3. Write the value back to memory (sw $r1, shm[0])

34

Question 2(b)

Run the program multiple times with various values for n and
nChild. Observe the result when n is high (e.g. n = 10000 and
nChild = 10). Explain the results.

• If two or more processes have their executions interleaved, it is
very likely that one process will overwrite the value written by
another process.
• In this case, it is impossible to have a deterministic value.

35

Race Condition: Unexpected results that occur
because the order of events are not enforced.

Question 2(b)

Run the program multiple times with various values for n and
nChild. Observe the result when n is high (e.g. n = 10000 and
nChild = 10). Explain the results.

36

Race Condition: Unexpected results that occur
because the order of events are not enforced.

Process P0

load shm[0] into $r1
add one to $r1

store $r1 into shm[0]

Process P1

load shm[0] into $r1
add one to $r1

store $r1 into shm[0]

Time

If a process reads from the shared memory before the other
process stores the updated value back to the shared memory, then
it would have loaded the outdated value into its register $r1

Question 2(b)

Run the program multiple times with various values for n and nChild.
Observe the result when n is high (e.g. n = 10000 and nChild = 10).
Explain the results.
There are two possible scenarios for the interleaving:
1. [Possible on multi-core processors] Multiple processes executes in parallel

and happen to interleave the instructions.
2. [Possible on single core processors] Process A swapped out (e.g. due to time

quantum) before step (3), the next process B will read the memory value and
continue to update. When A swapped back in, its previously read value (stored
in register) will be outdated. Upon writing back to memory, A has wipe out
work done by B.

37

Question 2(c)

Do you think (b) is caused by multi-core processors since
processes can run in parallel? Would the issue persist if you use
a single core processor?

38

• You can run experiment to find out.
• Use the Linux command taskset to bind a process (and all its child) to a

single processor core.
• E.g. "taskset –c 5 ./a.out 10000 100" will bind the executable

to run on core no. 5.

Question 2(c)

Do you think (b) is caused by multi-core processors since
processes can run in parallel? Would the issue persist if you use
a single core processor?

You still can get wrong result on a single core. You need to use
higher n to increase the chance that a process swapped out at
the "right" place for the error to show up.

39

How is shm[0]++ performed?

Process P0

CPU Context P0

Shared Mem

shm[0]

load shm[0] into $r1
add one to $r1
store $r1 into shm[0]

$r1

Process P1

CPU Context P1

load shm[0] into $r1
add one to $r1
store $r1 into shm[0]

$r1

Timing is key…..

Process P0

Shared Mem

shm[0]

load shm[0] into $r1
add one to $r1
store $r1 into shm[0]

Process P1

load shm[0] into $r1
add one to $r1
store $r1 into shm[0]

CPU Context P0

$r1

CPU Context P1

$r1

Time

Question 3

42

Question 3: Protecting the Shared Memory

Allowing processes to access and modify shared data whenever
they please can be problematic! Therefore, we would like to
modify the code in shm.c such that the output is deterministic
regardless of how large n and nChild are. More precisely, we
want the processes to take turns when modifying the result value
that resides in the shared memory.

43

Process Synchronization

• We need to ensure that only one
process can update the shared
memory at a time.
• In this week’s lecture you will be

introduced to process
synchronization and
mechanisms such as
semaphores.
• We can define a critical section

to ensure that one process can
update shared memory at a
time.

44

You can think of critical sections like going
through an automated immigration gate

Question 3: Protecting the Shared Memory

• We will add a new field in shared memory called the order
value, that specifies which process’ turn it is to increment the
shared result.
• If the order value is 0, then the parent should increase the

shared result, if the order value is 1, then the first child should
increase it, if the order value is 2, then the second child and so
on.
• Each process has an associated pOrder and checks whether

the value order is equal to its pOrder; if it is, then it proceeds
to increment the shared result. Otherwise, it waits until the
order value is equal to its pOrder.

45

Question 3: Protecting the Shared Memory

Our Task: Modify the code in shm_protected.c to achieve the
desired result.
i. Create a shared memory region with two locations, one for

the shared result, and the other one for the order value;
ii. Write the logic that allows a process to modify the shared

result only if the order value is equal to its pOrder (the
skeleton already takes care of assigning the right pOrder to
each process);

iii. Print the result value and cleanup the shared memory.

46

Hey, take turn!

Process P0

Shared Mem
shm[0]

pOrder = 0

while (pOrder !=
shm[0]);

shm[1]++ // n times

shm[1]

shm[0]++ //next!

Process P1

pOrder = 1

while (pOrder !=
shm[0]);

shm[1]++ // n times

shm[0]++ //next!

Code
// TODO: create a shared memory region that contains two values

 shmid = shmget(IPC_PRIVATE, 2*sizeof(int), IPC_CREAT | 0600);
 if (shmid == -1) {
 printf("Cannot create shared memory!\n");
 exit(1);
 } else {
 printf("Shared Memory Id = %d\n", shmid);
 }

 // TODO: attach the shared memory region to this process
 shm = (int*)shmat(shmid, NULL, 0);
 if (shm == (int*) -1) {
 printf("Cannot attach shared memory!\n");
 exit(1);
 }

48

Code
// TODO: initialize the shared memory

 shm[0] = 0;
 shm[1] = 0;

 for (i = 0; i < nChild; i++) {
 childPid = fork();
 if (childPid == 0) {
 pOrder = i + 1; // each process gets its pOrder
 break;
 }
 }

49

Code
// TODO: only increment the shared value if it's the process' turn

 // don't forget to let the other process know its turn has come
 while (shm[0] != pOrder); // Busy Wait

 for (i = 0; i < n; i++)
 shm[1]++;
 shm[0] = pOrder + 1;

 if (childPid != 0) {
 for (i = 0; i < nChild; i++)
 wait(NULL);
 // TODO: print the result value
 printf("The value in the shared memory is: %d\n", shm[1]);
 // TODO: detach and destroy
 shmdt((char*)shm);
 shmctl(shmid, IPC_RMID, 0);
 }

 return 0;

50

Question 3: Protecting the Shared Memory

Why is shm faster than shm_protected? Why is running
shm_protected with large values for nChild particularly slow?

• We made it impossible for two processes to modify the shared memory
location at the same time. We did it by serializing the code which will
make the execution time longer.
• The technique we use to prevent simultaneous access is called busy

waiting. Each process is continuously checking whether its time to modify
the variable has come. This requires the process to run on the CPU and
consume CPU cycles (thus the name).

51

Question 3: Protecting the Shared Memory

Why is shm faster than shm_protected? Why is running
shm_protected with large values for nChild particularly slow?

Note that at the moment when it’s Child X’s time to increment the value,
there are nChild – X processes doing busy waiting. Each of these processes
will get scheduled to run on the CPU but the execution of the program will
not make any progress. Because of this, your program will take a long time
to complete for large values of nChild.

52

53

END OF TUTORIAL

