
Tutorial 4
CS2106: Introduction to Operating Systems

1



Tutorial 3 Question 5

The simple MLFQ has a few shortcomings. It is best described 
by the scheduling behaviour for the following two cases:
a) (Change of heart) A process with a lengthy CPU-intensive 

phase followed by I/O-intensive phase.
b) (Gaming the system) A process repeatedly gives up CPU 

just before the time quantum lapses.
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MLFQ Rules
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n Basic rules:
1. If Priority(A) > Priority(B)  è A runs
2. If Priority(A) == Priority(B) è A and B run in RR

n Priority Setting/Changing rules:
1. New job è Highest priority
2. If a job fully utilized its time slice è Priority Reduced
3. If a job give up / blocks before it finishes the time slice è priority retained.



Tutorial 3 Question 5

Case A: (Change of heart) A process with a lengthy CPU-
intensive phase followed by I/O-intensive phase.
• The process can sink to the lowest priority during the CPU 

intensive phase. 
• With the low priority, the process may not receive CPU time in 

a timely fashion during the I/O phase which degrades the 
responsiveness.
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CPU CPU I/O CPU CPU I/O I/O CPU

Time Quantum = 2 TU
One Box = 1 TU

Priority = 2 Priority = 1 Priority = 0



Tutorial 3 Question 5

Case B: (Gaming the system) A process repeatedly gives up 
CPU just before the time quantum lapses.
• The process will retain its priority.
• Since all process enter the system with the highest priority, a 

process can keep its high priority indefinitely by using this trick 
and receive disproportionately more CPU time than other 
processes.
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Tutorial 3 Question 5

The following are two simple tweaks. For each of the rules, 
identify which case (a or b above) it is designed to solve, 
then briefly describe the new scheduling behaviour.
i. (Rule 1 – Accounting matters) The CPU usage of a process is 

now accumulated across time quanta. Once the CPU usage 
exceeds a single time quantum, the priority of the task will be 
decremented.

ii. (Rule 2 – Timely boost) All processes in the system will be 
moved to the highest priority level periodically.
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Tutorial 3 Question 5

(Rule 1 – Accounting matters) The CPU usage of a process is now 
accumulated across time quanta. Once the CPU usage exceeds a 
single time quantum, the priority of the task will be decremented.

• Rule 1 is designed to solve case B so that a process that repeatedly 
gives up CPU will not always have the highest priority. 
• By accumulating CPU usage, processes in Case B will eventually 

overshoot a single time quantum.
• This prevents such processes from hogging the CPU
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Tutorial 3 Question 5

(Rule 2 – Timely boost) All processes in the system will be 
moved to the highest priority level periodically.

Rule 2 is designed to solve case A, so that by periodically 
boosting the priority of processes, a process with different 
behaviour phases may get a chance to receive CPU time and 
remain responsive even after it has sank to the lowest priority.
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Question 1
It’s Kahoot Time!
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Question 1(a)

Under what conditions does FCFS (FIFO) scheduling result in the 
shortest possible average response time?
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Question 1(a)

Under what conditions does FCFS (FIFO) scheduling result in the 
shortest possible average response time?
• FIFO minimizes the average response time if the jobs arrive in 

the ready queue in order of increasing job lengths. 
• This avoids short jobs arriving later from waiting substantially 

for an earlier longer job. 
• A special case also exists: when all jobs have the same 

completion time (job length).
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Question 1(b)

Under what conditions does round-robin (RR) scheduling behave 
identically to FIFO?
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Question 1(b)

Under what conditions does round-robin (RR) scheduling behave 
identically to FIFO?

RR behaves identically to FIFO if the job lengths are shorter than 
the time quantum, since it is essentially a pre-emptive variant of 
FIFO.
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Question 1(c)

Under what conditions does RR scheduling perform poorly 
compared to FIFO?
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Question 1(c)

Under what conditions does RR scheduling perform poorly 
compared to FIFO?
• When the job lengths are all the same and much greater than 

the time quantum, RR performs poorly in average turnaround 
time
• When there are many jobs and the job lengths exceed the time 

quantum, RR results in reduced throughput due to greater 
overhead from the OS incurred due to context-switches when 
jobs are pre-empted
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Question 1(c)

Under what conditions does RR scheduling perform poorly 
compared to FIFO?
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Question 1(d)

Does reducing the time quantum for RR scheduling help or hurt 
its performance relative to FIFO, and why?

• It can both hurt and help performance relative to FIFO.
• Hurt Performance: 
• Reducing the time quantum results in more time spent by the CPU 

performing context switching.
• This reduces throughput and increases average turnaround time.

• Helps Performance:
• Reducing the time quantum reduces the waiting time for a task to first 

receive CPU time, thus increasing initial response time.
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Question 1(e)

Do you think a CPU-bound (CPU-intensive) process should be 
given a higher priority for I/O than an I/O-bound process? Why?

• Yes: CPU processes can be given higher priority for I/O so they 
may return to waiting for the CPU, decreasing overall 
turnaround time at the expense of response time of I/O-bound 
processes
• No: To maximise responsiveness of I/O-bound processes
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Question 2
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Question 2: Shared Memory

• In this question, we are going to analyze the pitfalls of having 
multiple processes accessing and modifying data at the same 
time. 
• Compile and run the code in shm.c. The executable accepts 

two command line arguments, n and nChild; if no command 
line arguments are given, the default values will be used: n is 
initialized to 100 and nChild is initialized to 1.
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Shared Memory: Create

Creates a shared memory segment of size bytes and returns a shared 
memory identifier.
• key_t key: A unique key to identify the shared memory segment. 
• size_t size: The size of the shared memory segment in bytes. 
• int shmflg: Flags to control the creation and access behaviour
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#include <sys/shm.h> 
int shmget(key_t key, size_t size, int shmflg);

https://man7.org/linux/man-pages/man2/shmget.2.html



Shared Memory: Attach

Attaches the shared memory segment associated with the shared memory 
identifier, shmid, to the address space of the calling process. It returns the 
starting address of the shared memory segment.
• int shmid: Shared memory identifier
• void* shmaddr: To specify a specific memory address to attach the 

segment to. If left as NULL, it will attach to the first available address as 
selected by the system
• int shmflg: Flags to control the creation and access behaviour
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#include <sys/shm.h> 
void *shmat(int shmid, const void *shmaddr, int shmflg);

https://man7.org/linux/man-pages/man3/shmat.3p.html



Shared Memory: Detach and Destroy

The shmdt() function detaches the shared memory segment located at the 
address specified by the argument shmaddr from the calling process's address 
space.
• void* shmaddr: Memory address of the shared memory segment.
The shmctl() function performs the control operation specified by op on the 
shared memory segment whose identifier is given in shmid.
• When op is set to IPC_RMID, it marks the shared memory segment to be 

destroyed after the last process detaches it.
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#include <sys/shm.h> 
int shmdt(const void *shmaddr)
int shmctl(int shmid, int op, struct shmid_ds *buf);

References: 
https://man7.org/linux/man-pages/man3/shmdt.3p.html
https://man7.org/linux/man-pages/man2/shmctl.2.html



Code Walkthrough Kernel Space

Process P0

Shared Mem
Id = 1234
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Question 2(a)

The value of the shared memory is initialized to 0, what is the 
expected final printed value given n and nChild? (Assuming no 
interleaving occurs)
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Question 2(a)

The value of the shared memory is initialized to 0, what is the 
expected final printed value given n and nChild? (Assuming no 
interleaving occurs)

Expected Final Value: (1 + nChild) * n
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Question 2(b)

Run the program multiple times with various values for n and 
nChild. Observe the result when n is high (e.g. n = 10000 and 
nChild = 10). Explain the results.
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Question 2(b)

Run the program multiple times with various values for n and 
nChild. Observe the result when n is high (e.g. n = 10000 and 
nChild = 10). Explain the results.

• We would observe the value to be smaller than expected in 
some test cases when n is sufficiently high.
• For a process to increment the variable, it must

1. Read the value from memory (lw $r1, shm[0])
2. Modify it (add $r1, $r1, 1)
3. Write the value back to memory (sw $r1, shm[0])
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Question 2(b)

Run the program multiple times with various values for n and 
nChild. Observe the result when n is high (e.g. n = 10000 and 
nChild = 10). Explain the results.

• If two or more processes have their executions interleaved, it is 
very likely that one process will overwrite the value written by 
another process. 
• In this case, it is impossible to have a deterministic value.

35

Race Condition: Unexpected results that occur 
because the order of events are not enforced.



Question 2(b)

Run the program multiple times with various values for n and 
nChild. Observe the result when n is high (e.g. n = 10000 and 
nChild = 10). Explain the results.
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Race Condition: Unexpected results that occur 
because the order of events are not enforced.

Process P0

load shm[0] into $r1
add one to $r1

store $r1 into shm[0]

Process P1

load shm[0] into $r1
add one to $r1

store $r1 into shm[0]

Time

If a process reads from the shared memory before the other 
process stores the updated value back to the shared memory, then 
it would have loaded the outdated value into its register $r1



Question 2(b)

Run the program multiple times with various values for n and nChild. 
Observe the result when n is high (e.g. n = 10000 and nChild = 10). 
Explain the results.
There are two possible scenarios for the interleaving:
1. [Possible on multi-core processors] Multiple processes executes in parallel 

and happen to interleave the instructions.
2. [Possible on single core processors] Process A swapped out (e.g. due to time 

quantum) before step (3), the next process B will read the memory value and 
continue to update. When A swapped back in, its previously read value (stored 
in register) will be outdated. Upon writing back to memory, A has wipe out 
work done by B.
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Question 2(c)

Do you think (b) is caused by multi-core processors since 
processes can run in parallel? Would the issue persist if you use 
a single core processor? 
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• You can run experiment to find out. 
• Use the Linux command taskset to bind a process (and all its child) to a 

single processor core.
• E.g. "taskset –c 5 ./a.out 10000 100" will bind the executable 

to run on core no. 5.



Question 2(c)

Do you think (b) is caused by multi-core processors since 
processes can run in parallel? Would the issue persist if you use 
a single core processor? 

You still can get wrong result on a single core. You need to use 
higher n to increase the chance that a process swapped out at 
the "right" place for the error to show up.
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How is shm[0]++ performed?

Process P0

CPU Context P0

Shared Mem

shm[0]

load shm[0] into $r1
add one to $r1
store $r1 into shm[0]

$r1

Process P1

CPU Context P1

load shm[0] into $r1
add one to $r1
store $r1 into shm[0]

$r1



Timing is key…..

Process P0

Shared Mem

shm[0]

load shm[0] into $r1
add one to $r1
store $r1 into shm[0]

Process P1

load shm[0] into $r1
add one to $r1
store $r1 into shm[0]

CPU Context P0

$r1

CPU Context P1

$r1

Time



Question 3
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Question 3: Protecting the Shared Memory

Allowing processes to access and modify shared data whenever 
they please can be problematic! Therefore, we would like to 
modify the code in shm.c such that the output is deterministic 
regardless of how large n and nChild are. More precisely, we 
want the processes to take turns when modifying the result value 
that resides in the shared memory.
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Process Synchronization

• We need to ensure that only one 
process can update the shared 
memory at a time.
• In this week’s lecture you will be 

introduced to process 
synchronization and 
mechanisms such as 
semaphores.
• We can define a critical section 

to ensure that one process can 
update shared memory at a 
time.
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You can think of critical sections like going 
through an automated immigration gate



Question 3: Protecting the Shared Memory

• We will add a new field in shared memory called the order 
value, that specifies which process’ turn it is to increment the 
shared result. 
• If the order value is 0, then the parent should increase the 

shared result, if the order value is 1, then the first child should 
increase it, if the order value is 2, then the second child and so 
on. 
• Each process has an associated pOrder and checks whether 

the value order is equal to its pOrder; if it is, then it proceeds 
to increment the shared result. Otherwise, it waits until the 
order value is equal to its pOrder.
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Question 3: Protecting the Shared Memory

Our Task: Modify the code in shm_protected.c to achieve the 
desired result. 
i. Create a shared memory region with two locations, one for 

the shared result, and the other one for the order value;
ii. Write the logic that allows a process to modify the shared 

result only if the order value is equal to its pOrder (the 
skeleton already takes care of assigning the right pOrder to 
each process);

iii. Print the result value and cleanup the shared memory.
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Hey, take turn!

Process P0

Shared Mem
shm[0]

pOrder = 0 

while (pOrder != 
shm[0]);

shm[1]++   // n times

shm[1]

shm[0]++   //next! 

Process P1

pOrder = 1 

while (pOrder != 
shm[0]);

shm[1]++   // n times

shm[0]++ //next! 



Code
// TODO: create a shared memory region that contains two values

    shmid = shmget(IPC_PRIVATE, 2*sizeof(int), IPC_CREAT | 0600);
    if (shmid == -1) {
        printf("Cannot create shared memory!\n");
        exit(1);
    } else {
        printf("Shared Memory Id = %d\n", shmid);
    }

    // TODO: attach the shared memory region to this process
    shm = (int*)shmat(shmid, NULL, 0);
    if (shm == (int*) -1) {
        printf("Cannot attach shared memory!\n");
        exit(1);
    }
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Code
// TODO: initialize the shared memory

    shm[0] = 0;
    shm[1] = 0;

    for (i = 0; i < nChild; i++) {
        childPid = fork();
        if (childPid == 0) {
          pOrder = i + 1; // each process gets its pOrder
          break;
        }
    }
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Code
// TODO: only increment the shared value if it's the process' turn

    // don't forget to let the other process know its turn has come
    while (shm[0] != pOrder); // Busy Wait
  
    for (i = 0; i < n; i++) 
        shm[1]++;
    shm[0] = pOrder + 1;

    if (childPid != 0) {
        for (i = 0; i < nChild; i++)
            wait(NULL);
        // TODO: print the result value
        printf("The value in the shared memory is: %d\n", shm[1]);
        // TODO: detach and destroy
        shmdt((char*)shm);
        shmctl( shmid, IPC_RMID, 0);
    }

    return 0;
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Question 3: Protecting the Shared Memory

Why is shm faster than shm_protected? Why is running 
shm_protected with large values for nChild particularly slow?

• We made it impossible for two processes to modify the shared memory 
location at the same time. We did it by serializing the code which will 
make the execution time longer.
• The technique we use to prevent simultaneous access is called busy 

waiting. Each process is continuously checking whether its time to modify 
the variable has come. This requires the process to run on the CPU and 
consume CPU cycles (thus the name). 
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Question 3: Protecting the Shared Memory

Why is shm faster than shm_protected? Why is running 
shm_protected with large values for nChild particularly slow?

Note that at the moment when it’s Child X’s time to increment the value, 
there are nChild – X processes doing busy waiting. Each of these processes 
will get scheduled to run on the CPU but the execution of the program will 
not make any progress. Because of this, your program will take a long time 
to complete for large values of nChild.
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END OF TUTORIAL


