
Tutorial 3
CS2106: Introduction to Operating Systems

1

Motivation for Scheduling

• OS needs to manage the allocation of the CPU to multiple
processes.

• Goal: Maximize CPU utilization, minimize CPU idle time.

2

CPU ProcessesOperating System

Recap: Scheduling Algorithms

Algorithm Batch / Interactive Pre-emptive Starvation

First Come First Served Batch No No

Shortest Job First No Yes

Shortest Remaining Time Yes Yes

Round Robin Interactive Yes No

Priority Based Yes Yes

Multi Level Feedback Queue Yes Yes

Lottery Scheduling Can be both No

3

CPU Starvation: A situation where a process is unable to access the CPU for an

extended period of time because other processes with higher priority are

continuously being executed

Recap: Scheduling Algorithms

• Non Pre-emptive Scheduling: A process stays scheduled (in
running state) until it blocks or give up the CPU voluntarily.

• Pre-emptive Scheduling: A running process can be
suspended when

1. It’s uses up its allocated time slice in Round Robin (RR), the OS
scheduler, suspends it and the next process in the ready queue is
scheduled to run.

2. A higher priority process arrives in Priority Scheduling and Multi-Level
Feedback Queue.

3. A shorter process with shorter remaining execution time arrives in
Shortest Remaining Time.

4

Preemptive Scheduling: Timer Interrupt

• In preemptive scheduling, we want the CPU to be periodically
interrupted.

• So that we can perform context switching to another process when
1. The current running process has used up its time slice.

2. A new process of higher priority has arrived in the ready queue. (for Priority-Based
Scheduling & MLFQ)

3. A new process with shorter remaining CPU execution time arrives.

• Using the clock of the CPU, we can generate Timer Interrupt events
at fixed intervals (e.g. 10ms)

5

CPU

Preemptive Scheduling: Timer Interrupt

• When a timer interrupt occurs, the current process execution is
suspended and the interrupt handler runs.

• The interrupt handler will first save the current process context
(registers, etc…) then invoke the Interrupt Service Routine
(ISR).

• The ISR would usually invoke the Scheduler.

6

Recall from Lecture 2 Slide 68, that interrupts are asynchronous and when it happens, control is

handed over to the handler routine, in this case during pre-emptive scheduling, the handler routine

is the ISR which invokes the scheduler.

The OS will (1) Save Register/CPU state, (2) Perform the handler routine, (3) Restore
Register/CPU and finally (4) Return from interrupt

Preemptive Scheduling: Timer Interrupt

• The Scheduler would then decide the next process to be given
CPU time or resume execution for the current process.

• This depends on the scheduling algorithm used.

• If the scheduler selects another process to be given CPU time,
then it will need to do a context switch.

7

Recap: Preemptive Scheduling

• Interval of Timer Interrupt (ITI)
• A timer interrupt goes off periodically based on the hardware clock.

• This interval is usually set from 1ms (Jiffy in Linux) to 10ms

• The timer interrupt is handled by the Interrupt Service Routine (ISR)

• The ISR invokes the OS scheduler which will decide the next process
to receive CPU time.

• Time Quantum
• Execution duration given to a process

• A multiple of the Interval of Timer Interrupt.

8

Illustration: ITI vs Time Quantum

9

A B C A

0 10 20 30 40 50 60 70 80 90

Time (ms)

A B

0 10 20 30 40 50 60 70 80 90

Time (ms)

Interval of Timer Interrupt = 10ms

Time Quantum = 20ms

Interval of Timer Interrupt = 10ms

Time Quantum = 40ms

Question 1

10

Question 1

You are given a mysterious program Behavior.c. This program
takes in one integer command line argument D, which is used as
a delay to control the amount of computation work done in the
program.

Use ideas you have learned from Lecture 3: Process Scheduling
to explain the program behavior in part (a) and (b).

a) D = 1

b) D = 1000,000,000

11

Question 1

(a) D = 1

(b) D = 1,000,000,000

12

void DoWork(int iterations, int delay) {
 int i, j;

 for (i = 0; i < iterations; i++){
 printf("[%d]: Step %d\n", getpid(), i);
 for (j = 0; j < delay; j++);
 //introduce some fictional work
 }
}

Parent

ChildDoWork(5, delay);

DoWork(5, delay);

Child Done!

Wait(NULL);

Parent Done!

Question 1

(a) D = 1

• It is likely to see all steps from one process get printed before
another.

• When the delay is very small, the total work done across the 5
iterations is less than the time quantum given for a process.

• Hence, the process can finish all iterations before get swapped
out.

13

Question 1

(b) D = 1,000,000,000

• It is likely you see an interleaving pattern.

• Each iteration in DoWork()now takes (multiple) time quantum
to finish.

• Since each process will be swapped out once the time quantum
expires, the printing will be in interleaved pattern.

14

Question 1

(c) Find the smallest D that gives you the following interleaving
output pattern.

• The amount of time to loop D times and the cost of the printing
is likely to be the time quantum used on your machine.

• Typical time quantum value is 10ms to 100ms.

15

Question 2

16

Question 2

Consider the following execution scenario:

17

Question 2(a): First-Come-First-Serve

Show the scheduling time chart with First-Come-First-Serve
algorithm. For simplicity, we assume all tasks block on the same
I/O resource.

18

First Come First Serve

• We assume scheduler kicks in at the beginning of the time step
whenever it is triggered

➔Show the result of the scheduling for the time step after scheduler
finished its job

Queuing Model of 5 State Transition

switch

by scheduler

admit

release cpu

event wait

ready

queue

blocked

queue

exitRunning

Process

20

1 2 1 2 2 1B

Initialization

CPU

I/O

3 1 3 1A

Ready Q

Blocked Q

3 1 3 1A
1 2 1 2 2 1B

Time: 1

A is chosen as it is the

first in Q

CPU A

I/O

Ready Q

Blocked Q

ACPU

I/O

2 Time

A A B C C A A A B

A B B A

4 6 8 10

B

B B

12

B

B

Time: 3

A still working, C

arrives

1 2 2 1B

Ready Q

Blocked Q

2C

1 1 3 1ACPU A

I/O

ACPU

I/O

2 Time

A A B C C A A A B

A B B A

4 6 8 10

B

B B

12

B

B

Time: 4

A blocks, B get CPU

I/O

Ready Q

Blocked Q

A

1 3 1A

1 2 1 2 2 1BCPU B
2C

ACPU

I/O

2 Time

A A B C C A A A B

A B B A

4 6 8 10

B

B B

12

B

B

2 1 2 2 1B

Time: 5

B blocks, C get CPU

I/O

Ready Q

Blocked Q

B

2BCPU C
3 1A

ACPU

I/O

2 Time

A A B C C A A A B

A B B A

4 6 8 10

B

B B

12

B

B

1 2 2 1B

Time: 7

C done; A get CPU; B

unblocks

I/O

Ready Q

Blocked Q

BCPU 3 1A

ACPU

I/O

2 Time

A A B C C A A A B

A B B A

4 6 8 10

B

B B

12

B

B

Time: 10

A blocks; B get CPU

I/O

Ready Q

Blocked Q

BCPU

1A

1 2 2 1B

A

ACPU

I/O

2 Time

A A B C C A A A B

A B B A

4 6 8 10

B

B B

12

B

B

Time: 15

ACPU

I/O

2 Time

A A B C C A A A B

A B B A

4 6 8 10

B

B B

12

B

B

Turnaround

Time

Waiting Time

A

B

C

Question 2(b)

Turnaround Time: Finish - Start Time

Waiting Time: Time spent waiting for CPU

Time: 15

ACPU

I/O

2 Time

A A B C C A A A B

A B B A

4 6 8 10

B

B B

12

B

B

Turnaround

Time

Waiting Time

A 10 10 – 8 = 2

B 15 15 – 9 = 6

C 6 – 3 = 3 3 – 2 = 1

Question 2(b)

Turnaround Time: Finish - Start Time

Waiting Time: Time spent waiting for CPU

Question 2(c): Round Robin

• Use Round Robin algorithm to schedule the same set of tasks.

• Assume time quantum of 2 time units.

30

Round Robin

• We assume scheduler kicks in at the beginning of the time step
whenever it is triggered

➔Show the result of the scheduling for the time step after scheduler
finished its job

1 2 1 2 2 1B

Initialization

CPU

I/O

3 1 3 1A

Ready Q

Blocked Q

3 1 3 1A
1 2 1 2 2 1B

Time: 1

A is chosen as it is the

first in Q

CPU A

I/O

Ready Q

Blocked Q

ACPU

I/O

2 Time

A A B C C A A A B

A B B A

4 6 8 10

B

B B

12

B

B

1 2 1 2 2 1B

Time: 3

A is removed from

CPU after 2 TUs.

CPU

I/O

1 1 3 1A

Ready Q

Blocked Q

B

ACPU

I/O

2 Time

A B B C C A A A B

A B B A

4 6 8 10

B

B B

12

B

B

2C

Time: 4

A get chosen (first in Q);

B blocks; C arrives

CPU

I/O

1 1 3 1A

Ready Q

Blocked Q

A

B

2 1 2 2 1B

ACPU

I/O

2 Time

A B A C C A A A B

B B B A

4 6 8 10

B

B B

12

B

B

C 2

Time: 5

C is the only ready

process

CPU

I/O

1 3 1A

Ready Q

Blocked Q

C

B

1 1 2 2 1B

ACPU

I/O

2 Time

A B A C C A A A B

B B B A

4 6 8 10

B

B B

12

B

B

1C

Time: 6

B unblocks; C continues

CPU

I/O

1 2 2 1B

Ready Q

Blocked Q

C

A

1 3 1A

ACPU

I/O

2 Time

A B A C C A A A B

B B A A

4 6 8 10

B

B B

12

B

B

Time: 7

B is chosen. A

unblocks.

CPU

I/O

3 1A
1 2 2 1B

Ready Q

Blocked Q

B

ACPU

I/O

2 Time

A B A C C B A A B

B B A A

4 6 8 10

B

B B

12

B

B

Time: 8

B blocks.

CPU

I/O

3 1A

2 2 1B

Ready Q

Blocked Q

A

B

ACPU

I/O

2 Time

A B A C C B A A B

B B A B A

4 6 8 10

B

B B

12

B

B

2 1BB

Time: 10

A vacates CPU. B

unblocks & get chosen.

CPU

I/O

1 1A

Ready Q

Blocked Q

ACPU

I/O

2 Time

A B A C C B A A B

B B A B B A

4 6 8 10

B

B B

12

B

B

1 1AA

Time: 12

B blocks.

CPU

I/O

1B

Ready Q

Blocked Q

B

ACPU

I/O

2 Time

A B A C C B A A B B

B B A B B A

4 6 8 10

B

B

A

B

12

B

B

Time: 13

B done; A blocks

CPU

I/O

1A

Ready Q

Blocked Q

A

ACPU

I/O

2 Time

A B A C C B A A B B

B B A B B A

4 6 8 10

B

A

AB

12

B

B

Time: 14

ACPU

I/O

2 Time

A B A C C B A A B B

B B A B B A

4 6 8 10

B

A

AB

12

B

B

Response Time

A 0

B 2 – 0 = 2

C 4 – 3 = 1

Question 2(d)

Response Time: Time between request and

response by system

Question 3

44

Question 3: MLFQ

Consider the standard 3 levels MLFQ scheduling algorithm with
the following parameters:

• Time quantum for all priority levels is 2 time units (TUs).

• Interval between timer interrupt is 1 TU.

• The scheduler is not pre-emptive. (i.e. a process gets to
complete its time quantum even if a higher priority process is
ready to run.)

45

Question 3: MLFQ

Give the CPU schedule for the following 2 tasks.

46

In this question, both Task A and B arrive at time T=0.

Task A is ahead of Task B in the Ready Queue.

MLFQ Rules

47

◼ Basic rules:

1. If Priority(A) > Priority(B) ➔ A runs

2. If Priority(A) == Priority(B) ➔ A and B run in RR

◼ Priority Setting/Changing rules:

1. New job ➔ Highest priority

2. If a job fully utilized its time slice ➔ Priority Reduced

3. If a job give up / blocks before it finishes the time slice ➔ priority retained.

Question 3

48

Arrive At Process Behavior Priority

0 A C3, IO1, C3 2

0 B C1, IO1, C1, IO1, C1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Q1

Q0

Time

Q2

CPU

I/O

Time Quantum = 2 TU

Interval Between Interrupt = 1 TU
Time = 0

Question 3

49

Arrive At Process Behavior Priority

0 A C3, IO1, C3 2

0 B C1, IO1, C1, IO1, C1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Q1

Q0

Time

A

Q2 A

CPU

I/O

Time Quantum = 2 TU

Interval Between Interrupt = 1 TU
Time = 1

Question 3

50

Arrive At Process Behavior Priority

0 A C3, IO1, C3 1

0 B C1, IO1, C1, IO1, C1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Q1

Q0

Time

A A

Q2 A A

CPU

I/O

Time Quantum = 2 TU

Interval Between Interrupt = 1 TU
Time = 2

Question 3

51

Arrive At Process Behavior Priority

0 A C3, IO1, C3 1

0 B C1, IO1, C1, IO1, C1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Q1

Q0

Time

A A B

Q2 A A B

CPU

I/O

Time Quantum = 2 TU

Interval Between Interrupt = 1 TU
Time = 3

Question 3

52

Arrive At Process Behavior Priority

0 A C3, IO1, C3 1

0 B C1, IO1, C1, IO1, C1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Q1

Q0

Time

A

A A B A

Q2 A A B

CPU

BI/O

Time Quantum = 2 TU

Interval Between Interrupt = 1 TU
Time = 4

Question 3

53

Arrive At Process Behavior Priority

0 A C3, IO1, C3 1

0 B C1, IO1, C1, IO1, C1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Q1

Q0

Time

A

A A B A B

Q2 A A B B

CPU

B AI/O

Time Quantum = 2 TU

Interval Between Interrupt = 1 TU
Time = 5

Question 3

54

Arrive At Process Behavior Priority

0 A C3, IO1, C3 1

0 B C1, IO1, C1, IO1, C1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Q1

Q0

Time

A A

A A B A B A

Q2 A A B B

CPU

B A BI/O

Time Quantum = 2 TU

Interval Between Interrupt = 1 TU
Time = 6

Question 3

55

Arrive At Process Behavior Priority

0 A C3, IO1, C3 0

0 B C1, IO1, C1, IO1, C1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Q1

Q0

Time

A A A

A A B A B A A

Q2 A A B B

CPU

B A BI/O

Time Quantum = 2 TU

Interval Between Interrupt = 1 TU
Time = 7

Question 3

56

Arrive At Process Behavior Priority

0 A C3, IO1, C3 0

0 B C1, IO1, C1, IO1, C1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Q1

Q0

Time

A A A

A A B A B A A B

Q2 A A B B B

CPU

B A BI/O

Time Quantum = 2 TU

Interval Between Interrupt = 1 TU
Time = 8

Question 3

57

Arrive At Process Behavior Priority

0 A C3, IO1, C3

0 B C1, IO1, C1, IO1, C1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Q1

Q0

Time

A A A

A

A A B A B A A B A

Q2 A A B B B

CPU

B A BI/O

Time Quantum = 2 TU

Interval Between Interrupt = 1 TU
Time = 9

Question 4

58

Question 4(a)

• Give the pseudocode for the Round Robin scheduler function.

• For simplicity, you can assume that all tasks are CPU intensive
that runs forever (i.e. there is no need to consider the cases
where the task blocks / give up CPU).

• Note that this function is invoked by timer interrupt that triggers
once every time unit.

59

Question 4(a)

60

Illustration: ITI vs Time Quantum

61

A B C A

0 10 20 30 40 50 60 70 80 90

Time (ms)

A B

0 10 20 30 40 50 60 70 80 90

Time (ms)

Interval of Timer Interrupt = 10ms

Time Quantum = 20ms

Interval of Timer Interrupt = 10ms

Time Quantum = 40ms

Question 4(a)

62

RunningTask.TQLeft--;

if (RunningTask.TQLeft > 0) done!

//Check for another task to run

if (ReadyQ.isEmpty())

 //renew time quantum

RunningTask.TQLeft = TimeQuantum;

 done!

//Need context switching

TempTask = ReadyQ.dequeue();

//current task goes to the end of queue

ReadyQ.enqueue(RunningTask);

TempTask.TQLeft = TimeQuantum;

SwitchContext(RunningTask, TempTask);

Question 4(b)

• Discuss how do you handle blocking of process on I/O or any
other events.

• Key point: Should the code in (a) be modified (if so, how)? Or
the handling should be performed somewhere else (if so,
where)?

63

Question 4(b)

Discuss how do you handle blocking of process on I/O or any
other events.

• For a process to access I/O devices or any other system level
events, the process need to make a system call, i.e. OS will be
notified.

• This system call is intercepted by the OS, which places the
process in a “blocked” state (in the blocked queue).

• Hence, the handling of I/O is managed by a dedicated system
call or interrupt handler, not directly in the above round-robin
scheduling loop.

64

	Slide 1: Tutorial 3
	Slide 2: Motivation for Scheduling
	Slide 3: Recap: Scheduling Algorithms
	Slide 4: Recap: Scheduling Algorithms
	Slide 5: Preemptive Scheduling: Timer Interrupt
	Slide 6: Preemptive Scheduling: Timer Interrupt
	Slide 7: Preemptive Scheduling: Timer Interrupt
	Slide 8: Recap: Preemptive Scheduling
	Slide 9: Illustration: ITI vs Time Quantum
	Slide 10: Question 1
	Slide 11: Question 1
	Slide 12: Question 1
	Slide 13: Question 1
	Slide 14: Question 1
	Slide 15: Question 1
	Slide 16: Question 2
	Slide 17: Question 2
	Slide 18: Question 2(a): First-Come-First-Serve
	Slide 19: First Come First Serve
	Slide 20: Queuing Model of 5 State Transition
	Slide 21: Initialization
	Slide 22: Time: 1
	Slide 23: Time: 3
	Slide 24: Time: 4
	Slide 25: Time: 5
	Slide 26: Time: 7
	Slide 27: Time: 10
	Slide 28: Time: 15
	Slide 29: Time: 15
	Slide 30: Question 2(c): Round Robin
	Slide 31: Round Robin
	Slide 32: Initialization
	Slide 33: Time: 1
	Slide 34: Time: 3
	Slide 35: Time: 4
	Slide 36: Time: 5
	Slide 37: Time: 6
	Slide 38: Time: 7
	Slide 39: Time: 8
	Slide 40: Time: 10
	Slide 41: Time: 12
	Slide 42: Time: 13
	Slide 43: Time: 14
	Slide 44: Question 3
	Slide 45: Question 3: MLFQ
	Slide 46: Question 3: MLFQ
	Slide 47: MLFQ Rules
	Slide 48: Question 3
	Slide 49: Question 3
	Slide 50: Question 3
	Slide 51: Question 3
	Slide 52: Question 3
	Slide 53: Question 3
	Slide 54: Question 3
	Slide 55: Question 3
	Slide 56: Question 3
	Slide 57: Question 3
	Slide 58: Question 4
	Slide 59: Question 4(a)
	Slide 60: Question 4(a)
	Slide 61: Illustration: ITI vs Time Quantum
	Slide 62: Question 4(a)
	Slide 63: Question 4(b)
	Slide 64: Question 4(b)

