
Tutorial 2
CS2106: Introduction to Operating Systems

1

Outline

1. Recap

2. Tutorial Questions

2

Objectives

• To understand the process behaviour based on the process
abstraction model in Unix.

• What happens during process creation?

• What happens when we call fork()?

• Use fork()and execl()in to solve problems.

3

Recap
Lecture Contents

4

Topic Summary

Text

Data

Stack

Heap

PCB1

PCB2

………

PCB3
PID

Process

State

PC, FP,

SP, ……

GPRs

Memory

Region

Info

Process

Table

Process

Control Block

Memory Space

of a Process

5

Process State Model

Ready

admit

switch: scheduled
exit

event wait
event occurs

create

Running

New

Blocked

Terminated

switch: release

 CPU

6

Behaviour of fork()

• Creates a new process (child process) that is almost an exact
copy of the parent process.

• Process Table Entry is created for the child process

7

Behaviour of fork()

PCBSH

………

Process

Table

Process

Control Block

OS Context

Hardware

Context

Memory

Context

PC, FP,

SP, ……

GPRs

PID

Process

State

PCBChild

Process

Control Block

OS Context

Hardware

Context

Memory

Context

PC, FP,

SP, ……

GPRs

PID

Process

State

8

Behaviour of fork()

• Hardware context from child process is copied over from the parent.
• Registers are copied over.

• Parent and child process have identical but independent memory
spaces

• Text (Code), Data, Stack and Heap region from the parent’s process memory
space is copied over to child process.

• Copy on Write Optimization: Only create a copy when a write is performed on
a location.

• Child process acquires shared resources from parent’s OS context
• Open Files, Current Working directories, etc…

9

Creating a Child Process: fork()

#include <stdio.h>
#include <unistd.h>

#include <sys/types.h>

int main() {
 int var = 1234;

 int result;

 result = fork();
 if (result != 0){

 printf("Parent: Var is %i\n", var);
 var++;

 printf("Parent: Var is %i\n", var);
 } else {

 printf("Child: Var is %i\n", var);
 var--;

 printf("Child: Var is %i\n", var);
 }

}

Parent

Parent Child

fork()

Parent: Var is 1234

Parent: Var is 1235

Child: Var is 1234

Child: Var is 1233

result = PID of Child result = 0

10

Creating a Child Process: fork()

• Child process begins execution at the same point where
fork()is called in the parent process.

• It shares the same executable code initially.
• Child’s executable code changes if you replace its executable image

with execl()

execl() System Call

• Replace current executing process image with a new one

• Only code is replaced, PID and other information still intact

11

Question 1

12

Question 1(a)

Evaluate whether the described behaviour is correct or incorrect.

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Behaviour

(i) Process Q always terminate before P.

(ii) Process R can terminate at any time w.r.t. P and Q.

Note that wait() does not block when a process has no children.

P

Q

R

Process Tree

13

Question 1(a)

Evaluate whether the described behaviour is correct or incorrect.

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Behaviour

(i) Process Q always terminate before P.

(ii) Process R can terminate at any time w.r.t. P and Q.

Statement (i) is True

But statement (ii) is False

Thought Process:
Which processes can execute wait(NULL)at line 11?

Note that wait() does not block when a process has no children.

14

Question 1(a)

Evaluate whether the described behaviour is correct or incorrect.

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Behaviour

(i) Process Q always terminate before P.

(ii) Process R can terminate at any time w.r.t. P and Q.

Statement (i) is True

But statement (ii) is False

Thought Process:
Which processes can execute wait(NULL)at line 11?

Answer: Processes P and Q

• At line 7, process R returns 0 and terminates.

• At line 11, process Q will wait for process R to

terminate.

• At line 11, process P will wait for process Q to

terminate.
• Therefore statement (ii) is False

Note that wait() does not block when a process has no children.

15

Question 1(b)

Evaluate whether the described behaviour is correct or incorrect.

Behaviour

(i) Process Q always terminate before P.

(ii) Process R can terminate at any time w.r.t. P and Q.

Thought Process:
Which processes can execute wait(NULL)at line 9?

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 <Point β>

 return 0;

}

Note that wait() does not block when a process has no children.

16

Question 1(b)

Evaluate whether the described behaviour is correct or incorrect.

Behaviour

(i) Process Q always terminate before P.

(ii) Process R can terminate at any time w.r.t. P and Q.

Thought Process:
Which processes can execute wait(NULL)at line 9?

Answer: Only Process Q

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 <Point β>

 return 0;

}

• At line 7, process R returns 0 and terminates.

• At line 9, process Q will wait for process R to

terminate.

• Process P does not wait for process Q to

terminate.
• Therefore statement (i) and (ii) are FALSE

Note that wait() does not block when a process has no children.

17

Question 1(c)

Evaluate whether the described behaviour is correct or incorrect.

Thought Process:
Which processes can execute wait(NULL)at

line 11?

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 execl(valid executable....); <α>

 }

 wait(NULL); <Point β>

 return 0;

}

Behaviour

(i) Process Q always terminate before P.

(ii) Process R can terminate at any time w.r.t. P

and Q.

Note that wait() does not block when a process has no children.

18

Question 1(c)

Evaluate whether the described behaviour is correct or incorrect.

Thought Process:
Which processes can execute wait(NULL)at

line 11?

Answer: Only Process P

• At line 7, process R returns 0 and terminates.

• At line 9, process Q’s executable image is replaced
with execl(). If the new executable does not have

a wait(NULL), then Q does not wait for R.

• At line 11, Process P waits for process Q to

terminate.

• Therefore statement (i) is TRUE but (ii) depends

on if the new executable code contains a
wait(NULL)

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 execl(valid executable....); <α>

 }

 wait(NULL); <Point β>

 return 0;

}

Behaviour

(i) Process Q always terminate before P.

(ii) Process R can terminate at any time w.r.t. P

and Q.

Note that wait() does not block when a process has no children.

19

Question 1(d)

Evaluate whether the described behaviour is correct or incorrect.

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Behaviour

Process P never terminates.

Note that wait() does not block when a process has no children.

20

Question 1(d)

Evaluate whether the described behaviour is correct or incorrect.

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Behaviour

Process P never terminates.

False. Process P will terminate.

Although Process Q has an additional wait(NULL)

after waiting for process R to terminate, the second
wait(NULL) returns immediately as at that point,

process Q has no more children.

Note that wait() does not block when a process has no children.

21

Visualization for Question 1(d)

22

Question 1(d) (Note that wait() does not block when a process has no children.)

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Process P Process Q

23

Question 1(d) (Note that wait() does not block when a process has no children.)

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Process P Process Q

24

Question 1(d) (Note that wait() does not block when a process has no children.)

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Process Q Process R

25

Question 1(d) (Note that wait() does not block when a process has no children.)

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Process Q Process R

26

Question 1(d) (Note that wait() does not block when a process has no children.)

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Process Q Process R

Process Q waits for Process R to terminate

27

Question 1(d) (Note that wait() does not block when a process has no children.)

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Process Q Process R

Process Q waits for Process R to terminate

Terminated: Exit and return 0

PCB entry of R is removed

28

Question 1(d) (Note that wait() does not block when a process has no children.)

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Process Q Process R

Terminated: Exit and return 0

PCB entry of R is removed

Process Q has no more children, wait(NULL) does

not block and returns immediately

29

Question 1(d) (Note that wait() does not block when a process has no children.)

C code:

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

int main() {

 //This is process P

 if (fork() == 0){

 //This is process Q

 if (fork() == 0) {

 //This is process R

 return 0;

 }

 wait(NULL); <Point α>

 }

 wait(NULL); <Point β>

 return 0;

}

Process Q Process R

Terminated: Exit and return 0

PCB entry of R is removed

Process Q has no more children, wait(NULL) does

not block and returns immediately

30

Question 1(d) (Note that wait() does not block when a process has no children.)

Process Q Process R

Terminated: Exit and return 0Terminated: Exit and return 0

C code:

00

01

…
11

12

13

14

int main() {

 //This is process P

…
 wait(NULL); <Point β>

 return 0;

}

Process P

Process P waits for Process Q to terminate

PCB entry of Q is removed

31

Question 1(d) (Note that wait() does not block when a process has no children.)

Process Q Process R

Terminated: Exit and return 0Terminated: Exit and return 0

C code:

00

01

…
11

12

13

14

int main() {

 //This is process P

…
 wait(NULL); <Point β>

 return 0;

}

Process P

Process P waits for Process Q to terminate

32

Question 1(d) (Note that wait() does not block when a process has no children.)

Process Q Process R

Terminated: Exit and return 0Terminated: Exit and return 0

Process P

Process P waits for Process Q to terminate

Terminated: Exit and return 0

Process P will eventually terminate

33

Question 2

34

Question 2(a)

What is the difference between the 3 variables: dataX, dataY and the
memory location pointed by dataZptr?

Text

Data

Stack

Heap

Memory Space

of a Process

Variable Memory Region

dataX

dataY

Memory location pointed by dataZptr

35

Question 2(a)

What is the difference between the 3 variables: dataX, dataY and the
memory location pointed by dataZptr?

Text

Data

Stack

Heap

Memory Space

of a Process

Variable Memory Region

dataX Data

dataY Stack

Memory location pointed by dataZptr Heap

36

Question 2(b)
Focusing on the messages generated by second
phase (they are prefixed with either "*" and "#"),
what can you say about the behavior of the
fork()system call?

int dataX = 100;

int main(int argc, char *argv[])

{

 pid_t childPID;

 int dataY = 200;

 int* dataZptr = (int*) malloc(sizeof(int));

 *dataZptr = 300;

 //First Phase

 printf("PID[%d] | X = %d | Y = %d | Z = %d |\n",

 getpid(), dataX, dataY, *dataZptr);

 //Second Phase

 childPID = fork();

 printf("*PID[%d] | X = %d | Y = %d | Z = %d |\n",

 getpid(), dataX, dataY, *dataZptr);

 dataX += 1;

 dataY += 2;

 if(childPID == 0)

 (*dataZptr) += 3;

 else

 (*dataZptr) += 5;

 printf("#PID[%d] | X = %d | Y = %d | Z = %d |\n",

 getpid(), dataX, dataY, *dataZptr);

• At the “*” messages, both the parent and child initially
have the same value after fork().

• The “#” messages show the data items after change.

• Both dataX and dataY have the same value in each

of their processes after the change.
• This shows that the processes have independent

memory space, because the updates do not affect

each other’s memory space.

37

Question 2(c)
Using the messages seen on your system, draw a process tree to represent the
processes generated. Use the process tree to explain the values printed by the child
processes.

Note: The process IDs you get might be

different

4335

4336

4338 4337

First Phase

Second Phase

Third Phase

38

Question 2(d)

Do you think it is possible to get different ordering between the output
messages, why?

39

Question 2(d)

Do you think it is possible to get different ordering between the output
messages, why?

• Yes.

• Once the processes are created, they

can be independently chosen by the

OS to run.

• Depending on the existence of other

processes at that time, it is possible

that OS chooses differently between

runs of the program

40

Question 2(e)

Can you point how which pair(s) of messages can never swap places? i.e.
their relative order is always the same?

41

Question 2(e)

Can you point how which pair(s) of messages can never swap places? i.e.
their relative order is always the same?

• "*" and "#" messages from the same process

can never change place as sequential ordering

is still preserved in the same process.

• Likewise, messages from the same process will

always follow the phases, i.e. "*", "#" before "**"

and "##".

• Message from the first phase (only one) must

precede all other messages. This is obviously

correct as there is only one process executing

at that time.

42

Question 2(f)

• How does this change
the ordering of the output
messages?

if (childPID == 0){

 sleep(5);

}

43

Question 2(f)

• The inserted code "pause" the first child
process (i.e. 4336) for 5 seconds.

• So, if we assume process 4338 takes less
than 5 seconds to create and run, then it is
likely that both process 4335 and 4338 will
finish execution before 4336 and 4337.

• However, this is not deterministic as
messages from both branches 4335 and
4336 can still mix

• Let’s see an example where we add
another sleep statement before we add
values to dataX, dataY and dataZptr in
phase 3.

4335

4336

4338 4337

First Phase

Second Phase

Third Phase

44

Question 2(f)

PID[4335] | X = 100 | Y = 200 | Z = 300 |

*PID[4335] | X = 100 | Y = 200 | Z = 300 |

#PID[4335] | X = 101 | Y = 202 | Z = 305 |

**PID[4335] | X = 101 | Y = 202 | Z = 305 |

*PID[4336] | X = 100 | Y = 200 | Z = 300 |

#PID[4336] | X = 101 | Y = 202 | Z = 303 |

**PID[4338] | X = 101 | Y = 202 | Z = 305 |

##PID[4338] | X = 102 | Y = 204 | Z = 308 |

**PID[4336] | X = 101 | Y = 202 | Z = 303 |

**PID[4337] | X = 101 | Y = 202 | Z = 303 |

##PID[4335] | X = 102 | Y = 204 | Z = 308 |

##PID[4336] | X = 102 | Y = 204 | Z = 306 |

##PID[4337] | X = 102 | Y = 204 | Z = 306 |

4335

4336

4338 4337

First Phase

Second Phase

Third Phase

102

204

308

102

204

306

45

Question 2(g)

• How does this change
the ordering of the output
messages?

if (childPID != 0){

 wait(NULL);

}

46

Question 2(g)

(1) The inserted code will pause process 4335 after
printing the “*” and “#” messages.

(2) Process 4336 will carry on to spawn its child
(process 4337).

(3) 4336 will continue to print its ** and ##
messages and exit.

(4) Once 4336 exits, the wait in 4335 will also exit,
and 4335 can continue to spawn 4338

(5) 4335 and 4338 will print their ** and ##
messages independently.

(6) Note also that 4337 will continue printing ** and
messages independently of what’s happening in
steps (4) and (5) above.

4335

4336

4338 4337

First Phase

Second Phase

Third Phase

The difference to (f) is that this is deterministic

regardless of how long process 4337/4338

takes to finish its execution.

Minimally, all second and third messages for process 4336

must be printed for process 4335 to resume from the third

phase to spawn process 4337

47

Question 3

48

Question 3(i)

• Modify only Parallel.c such that we can now initiate prime factorization on
[1-9] user inputs simultaneously.

• More importantly, we want to report result as soon as they are ready
regardless of the user input order.

49

int main(int argc, char* argv[])
{

int nFactor = 0, userInput, factor;

//Convert string to number
userInput = atoi(argv[1]);

nFactor = 0;
factor = 2;

//quick hack to get the number of prime factors
// only for positive integer
while (userInput > 1){

if (userInput % factor == 0){
userInput /= factor;
nFactor++;

} else {
factor++;

}
}

return nFactor;
}

PrimeFactor.c
gcc PrimeFactor.c –o "PF"

50

int main()
{

int userInput, childPid, childResult;
//Since largest number is 10 digits, a 12 characters string is more
//than enough
char cStringExample[12];

scanf("%d", &userInput);

childPid = fork();

if (childPid != 0){
wait(&childResult);
printf("%d has %d prime factors\n", userInput,

 WEXITSTATUS(childResult));

} else {
//Easy way to convert a number into a string
sprintf(cStringExample, "%d", userInput);

execl("./PF", "PF", cStringExample, NULL);
}

}

Parallel.c gcc Parallel.c

51

Solved Parallel.c

52

int main()
{

int i, j, userInput[9], nInput, childPid[9], childResult, pid;
char cStringExample[12];
scanf("%d", &nInput);

for (i = 0; i < nInput; i++){
scanf("%d", &userInput[i]);

childPid[i] = fork();
if (childPid[i] == 0){

sprintf(cStringExample, "%d", userInput[i]);
execl("./PF", "PF", cStringExample, NULL);

 return 0; //Redundant. Everything from here downwards
 // is replaced by PF in the child.

}
}
for (i = 0; i < nInput; i++){

pid = wait(&childResult);

//match pid with child pid
for (j = 0; j < nInput; j++){

if (pid == childPid[j])
break;

}
 //Special note: Original solution used childresult >> 8. Here
 // we use the official WEXITSTATUS macro to ensure portability.

printf("%d has %d prime factors\n", userInput[j],
 WEXITSTATUS(childresult));

}
}

53

Question 3(ii)
After you have solved the problem, find a way to change your wait()to
waitpid(), what do you think is the effect of this change?

int main()
{

int i, userInput[9], nInput, childPid[9], childResult;
char cStringExample[12];
scanf("%d", &nInput);

for (i = 0; i < nInput; i++){
scanf("%d", &userInput[i]);

childPid[i] = fork();

if (childPid[i] == 0){
sprintf(cStringExample, "%d", userInput[i]);
execl("./PF", "PF", cStringExample, NULL);

 return 0;
}

}
for (i = 0; i < nInput; i++){

waitpid(childPid[i], &childResult, 0);
printf("%d has %d prime factors\n", userInput[i], WEXITSTATUS(childresult));

}
} 54

Question 3(ii)
After you have solved the problem, find a way to change your wait()to
waitpid(), what do you think is the effect of this change?

The change of wait()to waitpid()forces the main process to wait for the
child process in the creation order of the child processes. This means that
the results are returned according to the user input order.

(base) kevin@Kevins-MacBook-Pro-5 Code % ./Parallel

5

1987

8

236

5

10

1987 has 1 prime factors

8 has 3 prime factors

236 has 3 prime factors

5 has 1 prime factors

10 has 2 prime factors

(base) kevin@Kevins-MacBook-Pro-5 Code % 55

	Slide 1: Tutorial 2
	Slide 2: Outline
	Slide 3: Objectives
	Slide 4: Recap
	Slide 5: Topic Summary
	Slide 6: Process State Model
	Slide 7: Behaviour of fork()
	Slide 8: Behaviour of fork()
	Slide 9: Behaviour of fork()
	Slide 10: Creating a Child Process: fork()
	Slide 11: Creating a Child Process: fork()
	Slide 12: Question 1
	Slide 13: Question 1(a)
	Slide 14: Question 1(a)
	Slide 15: Question 1(a)
	Slide 16: Question 1(b)
	Slide 17: Question 1(b)
	Slide 18: Question 1(c)
	Slide 19: Question 1(c)
	Slide 20: Question 1(d)
	Slide 21: Question 1(d)
	Slide 22
	Slide 23: Question 1(d)
	Slide 24: Question 1(d)
	Slide 25: Question 1(d)
	Slide 26: Question 1(d)
	Slide 27: Question 1(d)
	Slide 28: Question 1(d)
	Slide 29: Question 1(d)
	Slide 30: Question 1(d)
	Slide 31: Question 1(d)
	Slide 32: Question 1(d)
	Slide 33: Question 1(d)
	Slide 34: Question 2
	Slide 35: Question 2(a)
	Slide 36: Question 2(a)
	Slide 37: Question 2(b)
	Slide 38: Question 2(c)
	Slide 39: Question 2(d)
	Slide 40: Question 2(d)
	Slide 41: Question 2(e)
	Slide 42: Question 2(e)
	Slide 43: Question 2(f)
	Slide 44: Question 2(f)
	Slide 45: Question 2(f)
	Slide 46: Question 2(g)
	Slide 47: Question 2(g)
	Slide 48: Question 3
	Slide 49: Question 3(i)
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Question 3(ii)
	Slide 55: Question 3(ii)

