
Past Year Final Exams
CS2106: Introduction to Operating Systems

1

AY23/24 Semester 1

2

Question 1
Consider a contiguous memory system with 1-byte allocation units. Which ONE of the following
statements is FALSE?
A. Contiguous memory allocation is likelier to suffer from external fragmentation if it uses a best-fit
allocation policy.
B. Contiguous memory allocation is likelier to suffer from internal fragmentation if it uses a worst-fit
allocation policy.
C. In buddy allocation, we can test whether two blocks of size 2n are buddies just by testing that bit n
of the address of one block is a complement of bit n of the address of the other block, and that all
higher order bits of the addresses are identical. We assume that the LSB of both addresses is bit 0.
D. It is possible to make worst-fit allocation run in O(1) by sorting the free memory blocks by size in
descending order.
E. NONE of the statements A. to D. above are FALSE (i.e. ALL are TRUE)

3

Explanation
A contiguous memory allocation using 1-byte allocation units, strongly suggests that the system uses
dynamic partitioning, hence it is unlikely to suffer from internal fragmentation.

Question 2
Which ONE of the following statements about disjoint memory schemes is TRUE?
A. All processes share a single system-wide page table.
B. We use multi-level page tables to increase speed of memory access.
C. The TLB is a direct-mapped cache.
D. In a system using inverted page tables, there is one inverted page table per process.
E. NONE of the above statements A. to D. are true (i.e. ALL are FALSE).

4

Explanation
A. Not true because each process has its own page table
B. Not true because with more levels of page tables, you need to access memory multiple times

(accessing the page directory, then the actual page itself), and it would be worse if there are page
faults.

C. Not true, TLB is a fully associative cache, where a frame in memory can be stored at any cache line in
the TLB. (Direct mapped means a frame in memory is fixed to a specific cache line in the TLB, which
is not the case)

D. If inverted page table is used, there will be only one inverted page table for the entire system.

This question is tougher if
you forgot the concept of
direct mapped caching from
CS2100

Question 3
Which of the following statements i) to v) are TRUE? There may be multiple TRUE statements.
i. When integrating instruction/data caches with disjoint memory schemes, it is better to use

virtual addresses to access the caches instead of physical addresses, so that we may be able to
avoid doing an address translation.

ii. Increasing the size of the page table will generally reduce page fault rates.
iii. Locality causes an increase in page fault rates.
iv. A least recently used replacement policy can result in slow page replacements.
v. A large TLB will reduce the page-fault rate.

5

Explanation:
i. True. Think of the instruction and data cache as the TLB, since the entries in the TLB is the same as the page table, i.e.

how to translate pages to frames, by using virtual address on the cache, you can potentially avoid address translation
if the page entry exists in TLB.

ii. False. Belady’s anomaly
iii. False. Spatial and temporal locality reduces page faults because the pages are already likely to be in memory
iv. True. It is computationally expensive to maintain the last access time of each page
v. False. Having a larger TLB does not help reduce the page-fault rate, it reduces the TLB miss rate.

Question 4
Which of the following statements i) to v) are TRUE? There may be multiple TRUE statements.
i. Two processes that share the same Open File Table (OFT) entry will still be able to read the file

data without affecting each other in any way.
ii. You can have a maximum of 65536 blocks in a FAT16 file system
iii. Having larger logical blocks in an inode-based file system can cause external fragmentation.
iv. The minimum information required in a directory entry for a contiguous file system is the

filename, starting block and length of the file in blocks.
v. It is possible so store file metadata in the FAT instead of in the directory.

6

Explanation:
i. False.
ii. False. Although theoretically speaking, there are 16 bits in the FAT entry to identify each block and 216 = 65536, but

there are some block numbers that are reserved for EOF, Bad Sectors and FREE, so the actual number of usable blocks
for pointing to the next block is less than 65536.

iii. False. Data Blocks pointed by each I-Node Data Pointer can be spread out across non-contiguous blocks in memory,
hence it does not cause external fragmentation.

iv. True. Refer to the lecture slides
v. False. FAT does not store file metadata.

Question 5
A FAT32 file system is one where every FAT entry is 32 bits long. However, in the most common
implementation only 28 bits are used for block numbers. In such an implementation, if the logical
block size is 1024 bytes (1 KiB), what is the maximum disk/partition size possible with this file
system, in GiB? (1 GiB = 1024 x 1024 KiB)?
A. 0.0625 GiB
B. 16 GiB
C. 256 GiB
D. 4096 GiB
E. None of the above options A. to D. are correct.

7

Explanation:

The maximum partition size possible is 228 KB = !!""#
$%!&	×$%!&"#

= !!"

!!#
𝐺𝐵 = 2)𝐺𝐵 = 256𝐺𝐵

Question 6
We consider a system with 16-bit data words and instructions, and 32-bit byte addresses
shown below. The memory space for a process consists of a text (i.e. code) segment, data
segment, stack segment and heap segment. The segment registers store the segment IDs
of the respective segment

8

2 bytes

The “Start Address” column of the Segment Table contains the starting address of the segment as a
32-bit unsigned integer, while the length column shows the length of the segment in bytes as a 16-bit
unsigned integer. The tables above show the segment register values for a particular process P. All
addresses and lengths are shown in decimal.

Question 6
(a) In general (not just process P shown above), what is the maximum total size of a

process in KiB? (1 KiB = 1024 bytes)
• A process has 4 segments, text, data, stack and heap.
• The length of each segment (in bytes) is represented using a 16-bit unsigned integer.
• Hence, the maximum size of each segment is 216 bytes.

• So, the maximum total size of a process in KiB is !
*+×#
$%!#

= !*,

!*-
= 2& = 256 KiB

9

Question 6
(b) We are executing the following code fragment in this process P, and the segment
numbers are as shown in the diagram above. All data accesses are from the Data
Segment. Each instruction is 16 bits long and all instructions are fetched from the Text
Segment. The starting logical address of array A is (1, 710).

10

la $2, A ; Load address of A into $2
 li $3, 0 ; Initialize $3 to 0
 li $5, 0 ; Initialize $5 to 0
Loop: ld $4, [$2] ; Load the word at address in $2 into $4
 add $5, $5, $4 ; Add $4 to $5
 addi $2, $2, 2 ; Increment $2 by 2
 addi $3, $3, 1 ; Increment $3 by 1
 blt $3, 50, Loop ; Branch to Loop if $3 < 50
Exit: … ; Other irrelevant instructions.

Question 6
i. What are the first 5 PHYSICAL addresses generated by the ld instruction? Fill your

answers as decimal (base-10) integers.

• $2: Initially stores the address of array A, but gets incremented by 2 during each iteration
of the loop

• Starting logical address for array A is (1, 710)
• Starting physical address for array A is 1200 (Base) + 710 (Offset) = 1910

• Refer to the segment table provided for this question.

• First 5 physical addresses will be 1910, 1912, 1914, 1916 and 1918

11

While knowing what each MIPS instruction does would
be helpful for this question, the comments given at
each line suffices as context for this question

Question 6
ii. What is the range of PHYSICAL addresses that the instructions shown are loaded

from, assuming that the first instruction (la $2, A) is at (2, 1000)?
• Convert from logical address (2, 1000) to physical address 3000 + 1000 = 4000.
• Each instruction is 2 bytes and the system uses byte level addressing.
• So, the range of physical addresses are from 4000 to 4014

• 4000 + (8 instructions – 1) * 2 bytes = 4014 [since first instruction is already at 4000]

12

la $2, A ; Load address of A into $2
 li $3, 0 ; Initialize $3 to 0
 li $5, 0 ; Initialize $5 to 0
Loop: ld $4, [$2] ; Load the word at address in $2 into $4
 add $5, $5, $4 ; Add $4 to $5
 addi $2, $2, 2 ; Increment $2 by 2
 addi $3, $3, 1 ; Increment $3 by 1
 blt $3, 50, Loop ; Branch to Loop if $3 < 50
Exit: … ; Other irrelevant instructions.

Only 8 instructions
were shown here

Question 6
iii. What is the value in $3 when this program suffers a memory violation error?
• Memory violation error happens when the physical address generated by the ld

instruction exceeds 1200 + 800 – 1 = 1999.
• Deduct 1 because 1200 is counted as the first address

• Since the starting address of the array is already at 1910 [from b(i)]

• It means that only $''')	$'$%
!

+ 1 = 45 instructions can be loaded.
• Which means after incrementing 46 times, the physical address generated by the ld

instruction becomes 2000 and causes the program to suffer from a memory violation
error.

• Since $3 starts at value 0, after incrementing 46 times, the value of $3 will be 45.

13

Question 7
Suppose we have the process P running the same program as in Question 6 with the same
segment registers and segment table as before, but now the array A starts at logical
address (1, 118). The first instruction of the program remains at (2, 1000).
Our system now has a disjoint memory system where each page/frame is 8 bytes.

14

la $2, A ; Load address of A into $2
 li $3, 0 ; Initialize $3 to 0
 li $5, 0 ; Initialize $5 to 0
Loop: ld $4, [$2] ; Load the word at address in $2 into $4
 add $5, $5, $4 ; Add $4 to $5
 addi $2, $2, 2 ; Increment $2 by 2
 addi $3, $3, 1 ; Increment $3 by 1
 blt $3, 50, Loop ; Branch to Loop if $3 < 50
Exit: … ; Other irrelevant instructions.

Question 7
(a) How many pages are there in the text, data, stack and heap segments for process P?

15

• Size of one page = 8 bytes
• Text Segment: ⌈3125 / 8 bytes⌉ = 391 pages
• Data Segment: 800 / 8 bytes = 100 pages
• Stack Segment: ⌈350 / 8 bytes⌉ = 44 pages
• Heap Segment: ⌈403 / 8 bytes⌉ = 51 pages

Question 7
(b) What is the total internal fragmentation for process P in bytes in this system?
• Text Segment: !"#$

%
 = 390.625

• Internal Fragmentation = 0.375	×	8 =	3 bytes

• Data Segment: %&&
%
= 100

• Internal Fragmentation = 0 bytes

• Stack Segment: !$&
%
= 43.75

• Internal Fragmentation = 0.25	×8 = 2 bytes

• Heap Segment: '&!
%
= 50.375

• Internal Fragmentation = 0.625	×	8 = 5 bytes

• Total Internal Fragmentation = 3 + 2 + 5 = 10 bytes

16

Question 7
(c) What is the total external fragmentation in bytes possible in this system overall (not just

Process P but considering all possible processes)?
0 Bytes (Since this system uses disjoint memory management)

(d) What are the first and last page numbers accessed by our program when reading array
A?
• The starting logical address of Array A is (1, 118),
• Which makes the starting physical address of Array A = 1200 + 118 = 1318
• Since each page is 8 bytes, "!"%

%
= 164.75 (Need 165 pages)

• Since page numbers start from 0, the first page number is 164
• 50 elements are read from Array A where each element is a data word of 16 bits = 2 bytes
• Hence, the offset between the first and last element in the array = (50	 − 1)	×	2 = 98 bytes
• The last element’s starting physical address 1318 + 98 = 1416
• Last Page Number = "'"(

%
= 177

17

Question 7
(e) What are the page numbers of the first instruction (la $2, A) and last instruction (blt $3,

50, Loop)?
• From question 6(b) part (ii), we have calculated the range of physical addresses for the first till

last instructions to be 4000 to 4014.
• Page number of first instruction = '&&&

%
= 500 (Need 501 pages so page number is 500)

• Page number of last instruction = '&"'
%

= 501 (Need 502 pages so page number is 501)

18

Question 8
We consider a virtual memory system with 512-byte pages/frames. The system has 4 byte
words, a 20-bit virtual addressing space and a 16-bit physical addressing space. All
addresses are byte addresses.

(a) What is the maximum number of pages and frames possible in this system?
Maximum number of pages = !

.-

*$!
= !.-

!/
= 2$$ = 2048

Maximum number of frames = !
*+

*$!
= !*+

!/
= 2+ = 128

19

Question 8
(b) Assume that we have a single-level page table (i.e. “direct paging”) with each entry

containing a valid bit, a dirty bit and (of course) the frame number holding the page.
How large is this page table, in KiB? One KiB is 1024 bytes. (Hint: The number of bytes
in each page table entry must be a whole number).

• Since each page table entry includes the valid bit and dirty bit, two extra bits are
needed.

• Since there can be a maximum of 128 frames, 7 bits are required to store the frame
number.

• So, each page table entry requires 7 + 2	 = 9 bits = 1.125 bytes.
• But since the number of bytes in the page table entry must be a whole number, then

we must round up 1.125 bytes to 2 bytes.
• So, the page table is !%#&	×	!

!*-	
KiB = 4 KiB

20

Question 8
(c) A particular process is allocated 3 frames, and accesses the following memory

addresses in decimal:

1580, 2184, 1174, 1828, 3730, 2742, 1680, 3380, 2668, 2350

Assuming that we are using an LRU replacement policy. How many page faults are there
given the memory accesses above?
• Since each page is 512 bytes, it would require 9 bits for offset.
• The next step is to convert each of the memory addresses to binary to get the page

numbers.
• Finally, apply the LRU replacement policy on 3 frames, keep tracking of when each page

was last accessed.

21

Question 8
Decimal Binary Page No. Frame 1 Frame 2 Frame 3 Time Page Fault?
1580 011 001000000 3 3 (0) 0 Y
2184 100 010001000 4 3 (0) 4 (1) 1 Y
1174 010 010010110 2 3 (0) 4 (1) 2 (2) 2 Y
1828 011 101000100 3 3 (3) 4 (1) 2 (2) 3 N
3730 111 010010010 7 3 (3) 7 (4) 2 (2) 4 Y
2742 101 010110110 5 3 (3) 4 (3) 5 (5) 5 Y
1680 011 010010000 3 3 (6) 4 (3) 5 (5) 6 N
3380 110 100110100 6 3 (6) 6 (7) 5 (5) 7 Y
2668 101 001101100 5 3 (6) 6 (7) 5 (8) 8 N
2350 100 100101110 4 4 (9) 6 (7) 5 (8) 9 Y

22

(c) There were 7 page faults

Question 8
(d) We now assume that this system has a TLB with a hit rate of 95%, a TLB access time

of 3 ns, a main memory access time of 80ns, and that it takes 5 ms to remedy a page
fault. Suppose that the page fault rate is 2% (Note: This is not necessarily the correct
answer to the previous part). What is the average amount of time it takes to access
memory? There is no other caching other than the TLB. The page table is assumed to
be fully in memory.

0.95 * (3ns + 80ns) + 0.05 * (0.98 * (3ns + 80ns + 80ns) + 0.02 * (3ns + 80ns + 5ms))
= 0.95 * (3ns + 80ns) + 0.05 * (0.98 * (3ns + 80ns + 80ns) + 0.02 * (3ns + 80ns + 5000000ns))
= 5086.92ns

23

Question 8
(e) Let’s now suppose that we use a 2-level page table where there are 256 second-level page

tables. What is the minimum amount of memory in bytes required to hold the page tables in
order to be able to access a memory location?
• Originally, there were 2048 pages. If there are 256 second level page tables, then each second level page

table contains 8 pages
• Each second level page table requires 8	×	2	𝑏𝑦𝑡𝑒𝑠 = 16	𝑏𝑦𝑡𝑒𝑠
• The minimum amount of memory would amount to one entry in the page directory pointing to one second

level page table consisting of 8 pages while the other page directory entries remain uninitialized.
• Since the question wasn’t very clear what was in the page directory entry, two answers were accepted.
• Answer 1:

• To uniquely identify 256 directory entries, we need 8 bits or 1 byte for each entry.
• Hence the minimum amount of memory required to hold the page tables is 256 + 16 = 272 bytes

• Answer 2:
• Each directory entry will store the full 20-bit virtual address to each second-level page table.
• Hence the minimum amount of memory required is !01	×	!%

)
+ 16 = 656	𝑏𝑦𝑡𝑒𝑠	

24

Question 9
Let’s consider a contiguous memory allocation scheme using buddy allocation, with 4-byte
allocation units. This works the same way as what you’ve seen in the lectures, except that entry
n in the table now points to blocks of 2n allocation units rather than 2n bytes.

Suppose we have a total of 1024 bytes of memory starting at memory address 0, and the
following requests are made:
1. Allocate 45 bytes of memory
2. Allocate 300 bytes of memory.
3. Allocate 65 bytes of memory.
4. Deallocate memory requested in 1.
5. Allocate 15 bytes of memory
6. Deallocate memory requested in 2.
7. Allocate 125 bytes of memory.

25

Question 9
(a) How many allocation units in total do we have in this system?

1024 bytes / 4 bytes = 256 allocation units
(b) What are the addresses of the memory locations requested in steps 3, 5 and 7?

Remember that we are now allocating in units of 4 bytes and not 1 byte. Also, if
multiple blocks of the correct size are available, we always allocate from the block with
the lowest starting address.

26

45/64 65/128 300/512

65/128 300/512

15 65/128 300/512

15 65/128

15 65/128 125/128

Question 9
(b) What are the addresses of the memory locations requested in steps 3, 5 and 7?

Remember that we are now allocating in units of 4 bytes and not 1 byte. Also, if
multiple blocks of the correct size are available, we always allocate from the block with
the lowest starting address.
• Step 3: 128 bytes ÷ 4 bytes = 32
• Step 5: 0 ÷ 4 bytes = 0
• Step 7: 256 ÷ 4 bytes = 64

(c) What is the total internal fragmentation at the end of step 7 above?
(16 - 15) + (128 - 65) + (128 - 125) = 1 + 63 + 3 = 67 bytes

27

Question 10
Consider the program below:

uint16_t data; // Data is an unsigned 16 bit integer

int fd = open("test.txt", O_RDONLY);

for(int i=0; i<1048576; i++)

 read(fd, &data, sizeof(data));

Suppose each disk block holds 512 bytes of data. Block pointers are 16-bit unsigned
integers.

28

Question 10
(a) In the worst case, what is the total number of disk blocks read on a FAT-16 system,

assuming that the FAT is already in memory?
• In each iteration of the for loop, 16 bits of data is read from “test.txt” equivalent to 2 bytes
• Exiting the for loop, 1048576	×	2 = 2097152 bytes were read.
• Since, each disk block holds 512 bytes of data, #&)*"$#

$"#
= 4096 blocks of data were read.

(b) In the worst case, what is the total number of disk blocks read on a linked-list system?
Assume that the catalog entry for the file contains both the first and last block numbers
of the file.
The linked list system has no FAT, since the pointer is in each block, each block can only store
512 – 2 = 510 Bytes.
So in total, #&)*"$#

$"&
= 4113 blocks are read.

29

Question 10
(c) Suppose we have an inode system with 4 direct pointers, 2 single-level indirect pointers

and 1 double-level indirect pointer:
i. What is the largest possible file size in MiB with this inode structure? 1MiB = 1024 KiB, 1 KiB = 1024

bytes. Calculate to 2 decimal places.
• Since block pointers are 16-bit unsigned integers, then each block pointer is 2 bytes.
• So, the maximum number of block pointers in a directory block is 0$!! = 256
• The number of blocks pointed by each single-level indirect pointer is 256 blocks
• The number of blocks pointed by each double-level indirect pointer is 2562

• In total, there can be a maximum of 2562 + 256 + 256 + 4 = 66052 blocks in this inode structure
• Hence, the largest possible file size in MiB is 11%0!	×	0$!$%!&	×	$%!& = 32.25 MiB

ii. Given our program above, how many blocks in total are read, assuming that the inode is already in
memory?
• Since we need to read 4096 blocks in total, the first 4 blocks can be directly read
• The 2 single-indirect pointers gives us 512 blocks, but we also need to read 2 extra directory blocks
• For the double level indirect pointer, we will read 1 index block, then &%21	3&	3	0$!

!01
= 14 second level

index blocks are read.
• In total, there will be 17 index blocks (14 + 1 + 2)
• In total, there are 4096 + 17 = 4113 blocks are read.

30

Clarified with Prof Colin, that index blocks
are NOT in memory even through the inode

for a file is already in memory.

AY23/24 Semester 2

31

Part 2: Question 4
We consider an inode file system with 8 direct pointers, 4 single-indirect pointers, 2 double-
indirect pointers, and 1 triple-indirect pointer. Each data block is 1024 bytes, and each block
pointer is 8 bytes.
a. (2 marks) What is the maximum file size possible on this file system? Express your

answer in GB (1 GB = 1024 MB = 1024 x 1024 KB = 1024 x 1024 x 1024 bytes) correct
to 2 decimal places. Assume that there is sufficient space available.
• Each data block can store "&#'

%
= 128 pointers

• Total Blocks in I-Node = 8 + 4	×	128 + 2	×	128# + 128! = 2130440
• Maximum File Size = #"!&''&	×	"&#'

"&#'	×	"&#'	×	"&#'
= 2.03 GB

32

Part 2: Question 4
b. (8 marks) Assuming that only the inode has been loaded into memory, and none of the

lower level index blocks have been loaded yet, what is the TOTAL number of blocks
that must be loaded from disk when reading data from the following byte offsets
(relative to the start of the file):

33

Offset (bytes from start) Total # of Blocks Read

67

8100

53450

34082815

Part 2: Question 4
b. (8 marks) Assuming that only the inode has been loaded into memory, and none of the

lower level index blocks have been loaded yet, what is the TOTAL number of blocks
that must be loaded from disk when reading data from the following byte offsets
(relative to the start of the file):
• Step 1: Get the block numbers by doing 455678

$%!&
	

• Step 2: Determine the indirection level of the block
• Step 3: Need to account for loading directory block of pointers when calculating the number of blocks

34

Offset (bytes
from start)

Block No. N-th
Block

Indirection
Level

Total # of Blocks Read

67 67
1024

= 0 1 0 1

8100 8100
1024

= 7 8 0 1

534550 534550
1024

= 522
523 2 1 + 1 + 1 = 3

34082815 34082815
1024

= 33283
33284 2 1 + 1 + 1 = 3

Indirection Level Block No. N-th Block

0 0 to 7 1 to 8

1 8 to 519 9 to 520

2 520 to 33287 521 to 33288

3 33288 to 2130439 33289 to 2130440

AY24/25 Semester 1

35

Note

• The question number on Examplify is given by Question #: <No.>.
• There is another question number (e.g. Q1b) which is the question number

which is used by examiners and invigilators for clarifications.
• The question numbers used in this slides will follow the question number

used in Examplify.

36

Context for Q1 to Q2
We consider a system with 256 bytes of memory and 8-byte allocation units (i.e. memory is
always allocated in units of 8 bytes). All addresses are byte addresses. The current state of
the memory is shown below. If a partition is allocated to a request, the request name (a
single capital letter, e.g. A, B, C etc) is shown. Otherwise, the partition is shown as “Free”.

37

Start Request End Request Status

0 63 A

64 79 Free

80 103 B

104 127 Free

128 191 C

192 223 Free

224 231 D

232 255 Free

Context for Q1 to Q2
We use the next-fit allocation algorithm to allocate memory. In this algorithm, we start the
search for the first free partition from the beginning of the free list. For subsequent
requests, we continue from where we stopped. If we performed an allocation, we resume
our search at the very next free partition from where we complete our allocation. For
example, suppose we have the following memory state:

38

A Free
(32 Bytes) B

Suppose we allocate 24 bytes in the free partition above to C, we get:

A C Free
(8 bytes) B

Context for Q1 to Q2
The search for the next free partition will start at the 8-byte free space shown above. Note
that an operation to free a partition does not make that partition the next one to be
searched.
We have the following five requests:
1. E: Allocate 20 bytes
2. F: Allocate 12 bytes
3. Free memory allocated to D
4. G: Allocate 30 bytes
5. H: Allocate 12 byte

39

Question 1
What are the starting addresses of E, F, G and H? (10 marks)
E: 104
F: 192
G: 208
H: 240

40

We have the following five requests:
1. E: Allocate 20 bytes
2. F: Allocate 12 bytes
3. Free memory allocated to D
4. G: Allocate 30 bytes
5. H: Allocate 12 byte

A Free
(16 bytes)

Free
(24 bytes)B C Free

(32 bytes) D Free
(24 bytes)

A Free
(16 bytes) EB C F D Free

(24 bytes)
Free

(16 bytes)

A Free
(16 bytes) EB C F Free

(48 bytes)

A Free
(16 bytes) EB C F G Free

(16 bytes)

A Free
(16 bytes) EB C F G H

Tip: Round up the amount of memory allocated in each
request to the nearest unit of 8 bytes.
E (24 bytes), F (16 bytes), G: (32 bytes), H (16 bytes)

Question 2
i. What is the total internal fragmentation after completing all of the requests above? Do

not include memory allocated to A, B and C since we don’t know what the original
requests were. (1 mark)
Total Internal Fragmentation = (24 – 20) + (16 – 12) + (32 – 30) + (16 – 12) = 14 bytes

i. How much free memory is left after all the requests have been fulfilled? (1 mark)
16 bytes

41

Context for Q3 and Q4
We now consider a system again with 256 bytes of memory, but this time with an allocation
unit of 1 byte (i.e. we can allocate blocks as small as 1 byte), and buddy allocation. We
always allocate from the lowest address block first. So, if we have two buddy blocks of 64
bytes at address 0 and 64, we allocate the block at address 0 first.
The memory is currently in the state shown below. As before, a partition allocated to a
request is indicated by a single alphabet, while free partitions are indicated by the word
“Free”. To help you, the binary encoding of the starting addresses is shown.

42

Start Address End Address Status
0b0000 0000 (0) 15 Free
0b0001 0000 (16) 31 A
0b0010 0000 (32) 63 Free
0b0100 0000 (64) 127 B
0b1000 0000 (128) 159 C
0b1010 0000 (160) 255 Free

Question 3
We have the following four requests:
1. E: Allocate 10 bytes
2. F: Allocate 92 bytes
3. G: Allocate 28 bytes
4. Free(B)
Fill in the table below showing the state of the memory after fulfilling all of the requests
above. Two or more adjacent blocks of free memory must be shown as a single contiguous
block; for example, if you have free memory from addresses 64 to 95 and 96 to 127, be
shown as a single contiguous block from 64 to 127, or it will be marked as incorrect.
Memory State. In status fill a letter (e,g, A, B, G, etc) of the request if the partition is
allocated to a request or “Free” without the quotes if the partition is free in the table shown
on Examplify: (Note: due to a limitation in Examplify, only the first five rows of the memory
state table are shown):

43

Question 3

44

Start Address End Address Status

0 15 E

16 31 A

32 63 G

64 127 Free

128 159 C

(8 marks)

Question 4
What is the total internal fragmentation after all the requests in Q3 are fulfilled? Do not
count memory already in use before the requests were made.
(16 - 10) + (32 – 28) = 6 + 4 = 10 bytes

45

Context for Q5 to Q8
We consider a system with a 32-bit virtual address space and a 24-bit physical address
space. Pages/frames are 16 KiB (1 KiB = 210 bytes) long. Every page table entry (PTE)
consist of a frame number, three access bits (wrx), an “in-memory bit”, and a dirty bit.

46

Question 5
How large is each page table entry, rounded up to the nearest byte?

(2 marks)
• Given a 24-bit physical address space, we can have up to 224 addresses

• Number of frames = !.9

$,	×	!*-
= 2$% = 1024 (Need 10 bits for frame number)

• Total number of bits required in a PTE
• 10 (Page Number) + 3 (Three Access Bits) + 1 (In-Memory Bit) + 1 (Dirty Bit) = 15 Bits
• Rounded to the nearest byte = $0

)
= 2 bytes

47

Question 6
If we had every entry of the page table in memory, how large would this page table be?
State your answer in KiB (1 KiB =210 bytes)

(3 marks)

• Number of pages = -./012	34	56789:;	:<<7=>>=>
?:@=	ABC=

= !:.

$,	×	!*-
= 2$&

• Page Table Size = Number of pages × Page Size = !
*,	×	!
!*-

= 512	𝐾𝑖𝐵

48

Question 7
If we used multilevel page tables, what is the maximum number of levels that we would
have if PTEs are the same size at every level, each PTE is 4 bytes long, and we fully make
use of a page to store PTEs? The page table directory counts as one level, although it may
not occupy an entire page and may have fewer entries than the lower level page tables.

(4 marks)

• Number of PTEs at every level = DEF1	G6H1
?IJ	ABC=

= $,	×	!*-

#
= 2$!

• Need 14 bits for byte offset in a 16 KiB page
• Need 12 bits for each level

• Calculations
• 32 – 14 = 18 (Bits used for multi-level paging)
• Number of levels = "%

"#
= 2

• 12 bits for page table
• 6 bits for page table directory

49

Question 8
We have an array of size 64 MiB (1 MiB = 220 bytes) starting at address 0x2FCDFB3C. How
much memory is used by your page tables, including the page directory, in our multilevel page
table? Express your answer in bytes.

(3 marks)
• Convert 0x2FCDFB3C to Binary

• 0010 1111 1100 1101 1111 1011 0011 1100
• Byte Offset = 11 1011 0011 1100 (Since Byte Offset is not 0, 1 extra page is needed)
• Page No = 1111 0011 0111 (Since Page No is not 0, 1 extra directory entry needed)
• Page Table No = 0010 11

• Calculate number of pages need for 64 MiB
• 1&	×	!!#

$1	×	!$#
= !!%

!$&
= 2$!

• Need 2 second-level page tables: 2	×	16	𝐾𝑖𝐵 = 32768	𝐵𝑦𝑡𝑒𝑠	
• Need 1 page directory: 2!	×	4 = 256	𝐵𝑦𝑡𝑒𝑠	

• Memory used = 32768 + 256 = 33024	𝐵𝑦𝑡𝑒𝑠

50

Context for Q9 and Q10
Consider a system with a single-level page table, and with the following characteristics:

51

TLB Hit Rate 96%
TLB Access Time 2ns
Memory Access Time (Read) 50ns
Cache Memory Hit 97%
Cache Access Time 1ns
Page Fault Rate 2%
Disk Access Time 25 ms

Note: 1 ns = 10-9 s, 1 us = 10-6 s, 1 ms = 10-3 s

Context for Q9 and Q10
Some important points:
1. Some pages are dirty and may need to be written back to disk before being replaced.
2. The time taken to see if a page table entry is in TLB is 2 ns. If the page table entry is in

TLB, the time taken to get the frame number is negligible.
3. In the event of a TLB miss, the TLB is not re-read after remedying the miss.
4. The time taken to check the cache for a hit is 1 ns. If there is a cache hit, the time

taken to read/write the cache block is negligible.
5. In the event of a cache miss, the cache needs to be re-read after remedying the cache

miss. We ignore the time taken to write the memory block to cache.
6. The page table entries are only cached in the TLB and not in the memory cache.
7. In the event of a page fault, the faulting memory location must be re-accessed after

remedying the page fault.
8. For any answer that is not an integer, provide your answer to three decimal places.
9. Ensure that you provide your answers in the units shown.

52

Question 9
(a) What is the worst-case access time in this memory hierarchy? State your answer in ns.

(1 mark)
• TLB Miss = 2ns (Check TLB) + 50ns (Access Page Table in Memory) = 52ns
• Remedy Page Fault = 25ms (Write Dirty Page back to Disk) + 25ms (Retrieve Requested Page from Disk)

+ 50ns (Access Memory) = 50ms + 50ns
• Worst Case Access Time = 52ns + 50ms + 50ns = 50000102ns
• Note: Once it is known that the requested page is not resident in memory after accessing the page table,

there is NO point for the OS to access the cache.

(b) What is the best-case access time in this memory hierarchy? State your answer in ns.
(1 mark)
2ns (TLB Hit) + 1ns (Cache Memory Hit) = 3ns

53

Question 10
What is the average memory access time in this memory hierarchy, assuming that 25% of
the pages chosen for replacement are dirty and must be written back? State your answer
in ns. (6 marks)
• Average Time to Read Memory with Cache

• = 0.97 × 1ns + 0.03 × (time to read cache + time to read memory + time to reread cache)
• = 0.97 × 1 + 0.03 × (1 + 50 + 1) = 2.53ns

• Cases to Consider
• TLB Hit = 2ns (TLB) + 2.53ns = 4.53ns
• TLB Miss + Page in Memory = 2ns (TLB) + 50ns (Access Page Table) + 2.53ns = 54.53ns
• TLB Miss + Page in Secondary Storge = 2ns (TLB) + 50ns (Access Page Table) + 25ms (Disk Access) +

0.25 × 25ms (25% written back) + 50ns (Memory Access) = 31250102ns

• Average Memory Access Time:
• 0.96	×	4.53 + 0.04	× 0.98	×	54.53 + 0.02	×	31250102 = 25006.57ns

54

Question 11
Consider an inode-based file system with the following characteristics:
• Size of each block: 4 KiB (1 KiB = 1024 bytes)
• Size of each block pointer: 4 bytes
• Number of direct pointers: 12
• Number of single indirect pointers: 2
• Number of double indirect pointers: 1
• Number of triple indirect pointers: 1
• Average time taken to read a block: 12 ms (1 ms = 10-3 s)
For any answer that is not an integer, give your answer to three decimal places.

55

Question 11
(a) What is the maximum number of blocks possible on this partition? State your answer

to two decimal places in billions of blocks (1 billion = 109) (2 marks)
• A partition contains multiple I-Nodes.
• Each Block Pointer is 4 bytes or 32 bits.
• Maximum number of blocks = 2;! = 4294967296 = 4.29 billion blocks

(b) What is the maximum file size possible in this file system? Express your answer to two
decimal places in GiB (1 GiB = 230 bytes) (2 marks)
• Number of pointers in index block = &	×$%!&& = &%21

& = 1024
• Maximum number of blocks = 12 + 2	×	1024 + 1024! + 1024; = 1074792460 = 1.07 billion blocks
• Maximum File Size = $%<&<2!&1%	×	&%21

!'#
= 4100.01 GB

56

Question 11
(c) What is the best-case average time for reading data from a file? Express your answers

in milliseconds (1 ms = 10-3 seconds) (2 marks)
• Best Case Average Time = Reading a block from a direct pointer = 12 ms

(d) What is the worst-case average time for reading data from a file? Express your
answers in milliseconds (1 ms = 10-3 seconds)
• Worst Case Average Time = Reading a data block in the triple indirect pointer
• Need to read 3 index blocks and 1 data block
• Worst Case Average Time = 4	×	12 =	48ms

57

